
ON EMBEDDED PROCESSOR RECONFIGURATION OF LOGIC BIST FOR FPGA CORES IN SOCS
John Sunwoo, Srinivas Garimella, and Charles Stroud

Dept. of Electrical and Computer Engineering
200 Broun Hall, Auburn University, AL 36849-5201

email: sunwojo/garimsm/strouce@auburn.edu

ABSTRACT: Due to the limited access to the individual
embedded cores in System-on-Chips (SoCs), testing is
more time consuming and costly than testing stand-
alone Field Programmable Gate Arrays (FPGAs). How-
ever, the ability for an embedded processor core to re-
configure FPGA cores in SoC applications opens new
opportunities for Built-In Self-Test (BIST) of the FPGA
cores themselves. This paper discusses a number of im-
plementation issues in BIST for FPGA cores using par-
tial dynamic reconfiguration from an embedded proces-
sor including efficient ordering of the reconfiguration
process, actual speed-up and memory savings associated
with logic BIST, and the resulting affect on diagnosis of
the logic resources in the FPGA core.1

1. INTRODUCTION

A configurable System-on-Chip (SoC) typically
consists of a microprocessor core and peripherals, Field
Programmable Gate Array (FPGA) cores, program/data
memory, and other cores as needed. Since SoCs have a
highly integrated structure with limited number In-
put/Output (I/O) pins, it may not be possible to test all
the embedded cores in a SoC using test patterns from
external sources. Built-In Self-Test (BIST) could be a
better approach for testing SoCs as it does not require
any external test equipment and test patterns are gener-
ated by the embedded core itself, thus eliminating the
problem of core access. By eliminating external test
equipment, the BIST approach reduces the testing cost.

BIST approaches have been developed for FPGAs
by programming some of the programmable logic
blocks (PLBs) as Test Pattern Generators (TPGs) and
Output Response Analyzers (ORAs) to test the remain-
ing programmable logic and interconnect resources [1].
However, these techniques typically require download-
ing a large number of BIST configurations into the
FPGA one at a time, executing of each BIST sequence,
and retrieving of the BIST results at the end of each
BIST sequence. While this problem can be reduced by
minimizing the total number of BIST configurations
and/or by taking advantage of the partial reconfiguration
capabilities provided in recent FPGAs, the total test
time and memory storage requirements are still domi-
nated by the download process. For SoC testing, the
embedded microprocessor cores in SoCs can be pro-

1 This work was sponsored by the National Security Agency

under contract H98230-04-C-1177.

grammed to test other accessible cores such as FPGA
cores. Dynamic, partial, and full reconfiguration from
embedded processor cores to the FPGA cores between
each test phase can reduce the total test time. After
completion of BIST, the embedded processor can re-
trieve the test results, perform diagnosis, and report the
faults and their locations to a higher controlling device
such as a PC.

We have examined different implications on BIST
for FPGA cores in configurable SoCs that support dy-
namic partial reconfiguration of the FPGA core by an
embedded processor. The SoC targeted for this work is
the Atmel AT94K series Field Programmable System
Level Integrated Circuit (FPSLIC) [2]. The idea of us-
ing the embedded microprocessor core as the main
BIST component was first proposed in [3], which
achieved a 12.6 speed-up in total test time and a factor
of 13.5 reduction in memory required for storing BIST
configurations for the complete testing of the logic re-
sources in the FPGA [3]. The main idea was to elimi-
nate external downloads for each BIST configuration
and have single download file which includes the initial
FPGA BIST configuration and algorithmic procedures
for the embedded processor to reconfigure the FPGA
core for subsequent BIST configurations. Test time was
improved further by changing the order of the BIST
sequence since the ORA results can be retrieved after
multiple BIST configurations with little loss in diagnos-
tic resolution [4]. This resulted in improvements in test
time as well as the program memory size requirements.

In this paper, we improve the previous work by
eliminating all external downloads to the FPGA and
replacing those downloads with a single program. The
program contains algorithmic routines to reconfigure the
FPGA core for every BIST configuration. This requires
only a single download to the program memory, but if
the program is sufficiently small, it can reside in the
program memory without the need for any download.
The key point in this approach is to have an algorithmic
routine to reconfigure the FPGA for different BIST con-
figurations [3]. The paper begins with an architectural
overview of the Atmel AT94K series SoC as well as the
BIST architecture in Section 2. Next, the idea of using
the embedded processor core to reconfigure for BIST is
presented in Section 3 followed by detailed illustrations
of algorithmic processor routines including an efficient
reconfiguration ordering scheme in Section 4. The ex-
perimental results that show test time speed-up factor

cestroud
Note
Proc. IEEE North Atlantic Test Workship, pp. 15-22, 2005

and improved memory storage requirements over the
conventional BIST method are presented in Section 5.
The details of how this approach is applied to testing
RAM cores distributed in the FPGA are described in
Section 6 and the paper concludes in Section 7.

2. OVERVIEW OF SOC AND BIST ARCHITECTURES

The Atmel AT94K series SoC architecture consists
of an FPGA core, RAM cores, and an 8-bit Advanced
Virtual RISC (AVR) processor core [2]. The FPGA core
is based on a fine-grain architecture that has a large
number of small PLBs (about the one-fourth size of the
Xilinx Virtex/Spartan II series PLB [3]) [5]. It consists
of a symmetrical N×N array of PLBs, where N=48 for
the largest AT94K device. Each PLB contains two 3-
input look-up tables (LUTs), a D flip-flop, and addi-
tional multiplexers/gates [2]. Figure 1 shows X-outputs
and Y-outputs of each PLB that connect diagonally and
orthogonally via dedicated local routing resources to
inputs of its neighboring PLBs, respectively. As illus-
trated in Figure 2, vertical and horizontal bus repeaters
are placed at the boundaries of every 4×4 array of PLBs
to prevent signal degradation through the buses. Bank
clock and set/reset lines run to groups of four PLBs in a
single column within a repeater boundary.

Two types of RAM resources are present in the
AT94K series devices: dedicated embedded 32x4 free
RAMs in the FPGA and embedded SRAM memory
shared by both AVR and the FPGA. Each 4×4 array of
PLBs share a free RAM which can operate as a single-
port or dual-port RAM in synchronous or asynchronous
modes. The 36-Kbyte shared SRAM memory can be
partitioned into different sizes of data memory and pro-
gram memory spaces. The program memory is used for
executing AVR programs and cannot be accessed by the
FPGA core.

The AVR core is an 8-bit RISC architecture that
has 32 general purpose registers including a number of
peripherals like watchdog timer, UART, etc. [2]. In ad-
dition, there are two 8-bit bi-directional general purpose
I/O ports called PORTD and PORTE [2]. The AVR and
the FPGA cores interact through an 8-bit bi-directional

data bus. The dynamic reconfiguration capability of the
AVR core enables the embedded processor core to func-
tion as a main test resource can provide advantages in
testing due to its accessibility to the other cores [3].

The embedded AVR processor core can write into
(but not read from) the FPGA core configuration mem-
ory such that the FPGA can be dynamically reconfig-
ured (either fully or partially) by the processor core dur-
ing normal system operation. In later sections, some
advantages and disadvantages associated with this fea-
ture that can write into any byte of the configuration
memory is discussed. As illustrated in Figure 3, the
FPGA configuration memory access is via a 24-bit ad-
dress bus and 8-bit data bus. The address bus is parti-
tioned into three 8-bit components (called FPGAX,
FPGAY, and FPGAZ) that specify the address of the
target configuration memory byte to be reconfigured.
The FPGA is PLB addressable where the FPGAX and
FPGAY address values correspond to the horizontal and
vertical PLB location to be reconfigured. The FPGAZ
address corresponds to specific logic and/or routing
resources within the specified PLB. The 8-bit data bus is
called FPGAD and any writes into FPGAD cause a con-
figuration clock cycle to the FPGA configuration mem-
ory [2]. In addition to this cache logic feature, the AVR

Configuration Word
(24 Bit Address + 8 Bit Data)

FPGA Core

Processor
Core

FPGAX
FPGAY
FPGAZ
FPGAD

32-Bit

X

Y

Z

= PLB

Figure 3. FPGA-AVR Cache Logic Interface

Write

FPGA

Figure 2. FPGA Core Architecture

 Horizontal Repeater Vertical Repeater
Set/Reset Clock free RAM

AVR

8-bit data bus

FPGAIO
RE/WE

16 IOSEL

16 interrupts

Figure 1. Routing Resources

Y

Y

Y Y

X X

X X
PLB

= Programmable
Interconnect

Point

core can directly access the FPGA core through an 8-bit
bi-directional data bus and a 16-bit decoded address bus
available from AVR and directly connected to the
FPGA global routing resources [2]. The FPGA has 16
prioritized interrupt lines that connect to the AVR.

The BIST architecture for testing the PLB re-
sources configures a column of PLBs to function as two
or more identical TPGs that drive test patterns to
alternating columns of identically configured blocks
under test (BUTs) whose outputs are monitored by
comparison-based ORAs located in adjacent columns
between the BUTs [6]. Since a PLB cannot be con-
figured to have more than one X-input and one Y-input
selected at a time, the BIST architecture as shown in
Figure 4 is used wherein each ORA monitors a diagonal
X-output and a direct Y-output from their neighboring
BUTs. The BUTs are reconfigured in various modes of
operation until they are completely tested. The BIST
architecture is then flipped about the vertical axis to test
the PLBs that were previously TPGs and ORAs for the
complete test of all PLBs as BUTs [3].

3. PROCESSOR CORE RECONFIGURATION OF BIST

The dynamic partial reconfiguration capability of
the embedded processor core was previously used in
[3][4][6]. However, all of these approaches needed to
download one or more BIST configurations into the
FPGA core. The work presented in this paper is an ex-
tension of the previous work in [3][4][6] and is primar-
ily targeted at further improving the test time and mem-
ory requirements by avoiding any and all downloads
into the FPGA. By programming the embedded proces-
sor core to execute algorithmic reconfiguration routines,
the amount of memory required for storing BIST con-
figurations is reduced since no configuration data is
downloaded into the FPGA. The fine-grain architecture
in conjunction with the PLB addressable configuration
memory of the AT94K series SoCs helps to configure
the BIST structures without the need for excessive con-
figuration clock cycles. If small enough, the BIST pro-
gram can remain resident in the program memory for
on-demand reconfiguration and execution of BIST, re-
quiring no download at all. If fast enough, the BIST
program can be more frequently used during idle inter-

vals in system operation for high reliability, high avail-
ability applications.

To accomplish the first goal, minimizing the size
of the program, the BIST architecture must be regular to
facilitate an efficient reconfiguration algorithm. In addi-
tion, the order of the configuration process must be effi-
cient. The configuration order also impacts the second
goal, minimizing test execution time. The test execution
time can also be reduced by not retrieving test results
from the ORAs after each BIST configuration but in-
stead, using dynamic partial reconfiguration to execute
many BIST configurations before retrieving test results.
There is some loss of diagnostic resolution in that the
faulty functionality within the PLB can no longer be
identified. However, there is no loss in diagnostic reso-
lution in that the faulty PLB(s) can still be identified [4].

In [6], the BIST configurations for the FPGA cores
in AT94K series SoCs were developed using Atmel’s
Macro Generation Language (MGL) and were param-
eterized to handle devices of various sizes [6]. Since
BIST configurations generated from the MGL test all
logic resources in the BUTs with total of 4 BIST con-
figurations, our first goal was to program the embedded
processor to perform the same tests by mimicking the
BIST structures which were generated by the MGL,
replacing all the BIST configuration downloads with a
single AVR program.

One of the limitations of this approach, of having
single processor program to test all the resources in an
FPGA, is that the time required for developing and de-
bugging the program can be significant. Most of the
FPGA design tools provide a graphical representation of
the design to be implemented in the FPGA since this
can help in debugging the design. Atmel provides a tool
called Figaro which graphically represents how the de-
sign is mapped onto the FPGA provided the original
design is described using MGL, VHDL or Verilog. On
the other hand, if the entire BIST configuration is gen-
erated through partial reconfiguration by the AVR, de-
bugging the design without any tool support can become
quite tedious and error-prone. If the AT94K series SoCs
were capable of the dynamic configuration read-back
via the AVR processor core (which is not the case),
BIST development time would be greatly reduced by
facilitating read-modify-write operations to the configu-
ration memory. Instead, the BIST configurations previ-
ously developed and verified using MGL as described in
[6] must serve as a baseline for developing and debug-
ging the desired program for the AVR processor core.

In order to develop the AVR program, we must de-
termine the BIST configuration that has to be generated
initially and also the proper order of subsequent
configurations so as to minimize the configuration time
from the AVR. We use the BIST configurations origi-

a) West Session b) East Session

=TPG
=BUT
=ORA

 Routing
Scheme 1

Routing

Scheme 2

Figure 4. Logic BIST Architecture [3]

nally developed using MGL [6] to help determine these
two issues. While the graphical representation of the
design helps in planning the reconfiguration routines as
to how the different resources (logic, routing, repeaters,
and clocks) have to be configured, the MGL generated
bit-stream helps in determining the order in which to
write various configurations bytes for different re-
sources so as to make the algorithmic reconfiguration
routines efficient in terms of speed and size as well as
power dissipation during reconfiguration.

After developing and verifying the routines for the
initial configuration, routines have to be developed for
reconfiguring the BUTs to test the different modes of
operation. The BIST reconfiguration order has to be
carefully considered and arranged since, if different
resources are configured independently, there is possi-
bility of destroying the previously configured bytes as
some of the configuration bytes are shared by different
resources. For example, if connecting a single pro-
grammable interconnect point at the input to a PLB re-
quires writing a logic 1 on the least significant bit loca-
tion of a specific byte, then writing 00000001 may turn
off existing activated programmable interconnect points
that are needed for BIST.

4. PROCESSOR CORE PROGRAM DEVELOPMENT

The algorithmic reconfiguration program for the
embedded AVR core was developed in C. The pro-
gram’s subroutines and reconfiguration sequence is ar-
ranged in the following order:

1. Clear the FPGA – Instead of the chip reset, this sub-
routine clears the FPGA configuration memory con-
tents to ensure the BIST components will be config-
ured into an empty FPGA. It clears all configuration
memory bytes associated with PLBs, repeaters,
clocks/resets, flip-flops, free RAMs, and I/O buffers
[2]. This routine is also executed when there are tran-
sitions between test sessions as shown in Figure 4.

2. Initialize the ORAs – This subroutine configures the
local routing resources associated with each ORA and
its LUTs to function as a comparison-based ORA. It
configures the ORAs to either routing scheme 1 or 2
as shown in Figure 4 as well as resets the ORA flip-
flop contents to logic 0.

3. Initialize/reconfigure the BUTs – This subroutine first
configures the cross points where the TPG signals and
the BUT inputs are crossed along the very top and the
bottom of the FPGA array. When the routine is used
to reconfigure the BUTs for the next test phase, de-
pending on the test session and the BIST configuration,
it changes the local routing connecting the BUTs as
well as the programmable logic resources inside the
BUTs. The BUTs are also reset through this subrou-
tine meaning the flip-flops in all of the BUTs are
initialized to either logic 0 or logic 1 (depending on

tialized to either logic 0 or logic 1 (depending on the
BUT configuration) to ensure correct BIST operation.
In fact, this feature provides additional testing of the
flip-flops that cannot be tested by downloading indi-
vidual BIST configurations into the FPGA core and
illustrates the improved controllability obtained with
partial reconfiguration from the embedded processor
core.

4. Initialize the TPGs – This subroutine programs two 5-
bit counters in the TPG column of the PLB array. It
also performs all local, global, and repeater routing
between the TPG PLBs as well as the TPG to BUT
signal connections as shown in Figure 4. When con-
figuring repeaters in this step, writing to some of the
repeater bytes needs extra attention because some of
the bytes in repeaters also include clock and set/reset
control bits. This subroutine also initializes the TPG
flip-flops to logic 0 to ensure that the TPGs are syn-
chronized prior to execution of the BIST sequence.

5. Route BIST clock controlled by the AVR interface –
This subroutine connects the FPGA Write Enable line
(FPGAIOWE) from the AVR interface to one of the
global clock input lines of the FPGA core so that the
BIST clock signal can be distributed throughout the
PLBs. FPGAIOWE is a strobe line which is activated
when the AVR writes onto the 8-bit bi-directional data
bus and is used to generate and control the BIST clock
from the AVR. Since the AVR-FPGA interface cannot
be called from the MGL, careful attention was re-
quired while developing this routine. Finally, this sub-
routine configures the clock control settings such as
clock invert bits for the TPGs, BUTs, and ORAs
which is the last steps before running the BIST.

6. Run the BIST clock – In this subroutine, the embed-
ded AVR processor generates the BIST clocks to the
FPGA core to run the complete BIST sequence. The
TPGs generate the test patterns and any ORAs that see
mismatches in the outputs of their two neighboring
BUTs will latch up a logic 1.

7. Reconfigure the ORAs as a scan chain – At the com-
pletion of the BIST sequence, the ORAs will hold the
test results to be read by the AVR. During this subrou-
tine, all of the ORAs are dynamically reconfigured as
a scan chain without affecting the contents of the
ORA flip-flops.

8. Route the scan out data to the AVR interface – When
ORA results are scanned out to the AVR core, the bi-
directional data bus between the AVR and FPGA core
must be used to shift the ORA results to AVR for
storage in the data memory. This subroutine routes a
signal path from the output of the last ORA in the shift
register to one of the 8-bit data bus lines to the AVR
core shown in Figure 2

9. Retrieve ORA results and store in the data memory
for fault detection and/or diagnosis. – According to
the instruction given to the embedded processor by a
higher computing source (a PC in our case), the AVR
can retrieve the ORA results after every BIST con-
figuration or after multiple BIST configurations. In the
latter case, there is some loss in diagnostic resolution
but it does not degrade any fault detection capabilities.
Thus, it still detects any faulty PLBs while attaining
faster test time. The AVR can either return the actual
test results (the contents of the ORAs) or it can per-
form an on-chip diagnostic procedure [4] as instructed
by the higher computing source. In the event that the
AVR is instructed to perform diagnosis, it returns a
list of all faulty PLBs and their locations in the array
for the BIST configuration(s) just executed.

To minimize program size, most of the configura-
tion routines for the first (west) test session are param-
eterized so that they can be reused for the second (east)
test session (see Figure 4). The main difference between
the two test sessions is the direction of the TPG signal
flow across the top and the bottom of the array which
correspond to horizontal repeaters on the top and bottom
rows. The rest of the configuration subroutines for the
BUTs and ORAs are reused simply by applying offsets
to the column locations. TPG configuration routines are
also reused by changing the TPG column location from
FPGAX = 0 for the first (west) test session to FPGAX =
ArraySize-1 for the second (east) test session. Thus,
most of the configuration subroutines described above
take two parameters: directions of the TPG signal flow
to the BUTs (west or east) and the BIST configuration
for the particular BUT mode of operation to be tested.

To find an efficient configuration sequence when
reconfiguring the FPGA core from scratch, a primary
goal is to avoid the risk of overwriting a configuration
bit that has been previously written and, as a result, in-
advertently injecting errors into a BIST configuration.
The following considerations help to minimize this risk.
First, do not configure more than what is needed when
configuring the FPGA for the test. For example, the
clock need not be configured until the other BIST com-
ponents are configured and ready for the BIST clock.
When BIST clock is ready to be applied for the BIST
sequence, the scan out path from the ORAs is not
needed and should only be configured right before the
BIST results have to be retrieved. Second, keep track of
configuration bytes that have more than one kind of
programmable component (such as repeaters and global
clocks and resets, for example). Third, configure re-
sources that are regular and repeat over the entire array
first (such as the BUTs and ORAs, for example) and
then configure the resources that are local to a specific
area in the FPGA array (such as the clock, scan out sig-
nal, and TPGs).

Atmel’s MGL and Figaro IDS tools help, to a cer-
tain extent, in speeding up the development and debug-
ging process for the AVR program which consists of the
various configuration subroutines. In order to use an
MGL program in debugging, a completely developed
and verified MGL-based BIST configuration from [2]
was modified to omit certain configurations of the BIST
components in the FPGA core as illustrated in Figure 5.
An AVR program was then developed to write the con-
figuration of the original components missing in the
modified MGL configuration. The MGL generated bit
stream and the compiled AVR code are then combined
into a single bit stream using Atmel System Designer
and downloaded into the SoC. The MGL-based BIST
configuration with missing BIST components will re-
port failures on running BIST. However, if the BIST
runs correctly after the execution of the AVR configura-
tion routine, then we have verified, at least to a certain
extent, that the configuration subroutine correctly re-
places the missing BIST component. Each BIST com-
ponent is removed, one at a time, from the MGL code
and combined with appropriate AVR configuration sub-
routine to verify all of the AVR configuration subrou-
tines for all BIST components. In this manner, we are
essentially using the BIST architecture to test itself for
design verification. A fault injection emulation tech-
nique is then used by reconfiguring certain PLBs to
have faults and to verify that the BIST accurately de-
tects and diagnoses these faults [7]. When there is no
MGL-generated configuration data to be downloaded
into the FPGA core, we are left with one AVR program
which consists of all the logic BIST reconfiguration
subroutines to be downloaded to the program memory
of the SoC.

5. EXPERIMENTAL RESULTS

The AVR program consisting of the various sub-
routines described in the previous section are summa-

Figure 5. Use of MGL to Verify AVR Routines

ii) AVR program rou-
tine that configures
lower TPGs on the
FPGA core

iii) Run BIST and
verify the operation
with fault inject

i) MGL bit stream to be
downloaded into the
FPGA core

rized in Table 1 in terms of individual program memory
storage requirements, number of lines of source code,
and the number of processor execution cycles for each
configuration subroutine. Note that Table 1 contains the
detailed functional level analysis of the final program
which compiles to an Intel HEX file format to be
downloaded to the program memory of the chip to run
all of the west and east test sessions which are equiva-
lent to BIST configurations studied in [4]. Almost all of
the subroutines developed for west test session are re-
used in east session to reduce the program memory size.

Table 1. Total Configuration Routine Analysis
Processor
Execution

Cycles

BIST
Reconfiguration

Subroutines

Program
Memory

Size
(KBytes)

Number
of Lines
of Code

(Approx.) K10 K40
Clear FPGA 0.492 150 59664 215128

Place/config BUT 0.834 300 25829 100360
Place/route ORA 0.22 70 14844 60686
Place/route TPG 1.486 600 4652 14866

Route BIST clock 0.234 40 1923 4911
ORA/shift reg 0.282 80 6371 24791
Route scan out 0.402 45 24879 97370

Misc. 0.726 2700 * *
Total 4.676 4000 138162 518112

* Ignored in the total value.

Due to the irregular structure of the TPG and asso-
ciated routing, the subroutine for configuring the TPG
PLBs and the TPG to BUT routing occupies a large
portion of the program memory. The second biggest
subroutine is the placement and reconfiguration of the
BUTs since this contains 16 different combinations of
BUT test configurations as well as the flip-flop and
set/reset tests in half of the BIST configurations. The
complete AVR program occupies 4.7 KBytes of pro-
gram memory which corresponds to only about 14% of
the total 32 KByte program memory space of the
AT94K series SoC.

In contrast to the program memory size or the
number of C source code line, processor execution cy-
cles listed in Table 1 shows a different aspect of the
BIST reconfiguration program. For example, more exe-
cution cycles are required in the routines for the clearing
the FPGA, for placement and reconfiguring of the BUTs,
and for placement and routing the ORAs. Fewer execu-
tion cycles are required for placing and routing the
TPGs. This is because the first three subroutines contain
extensive loops which travel along every X and Y loca-
tions of the chip. This illustrates how the regular and
algorithmic structure of the BIST architecture helps to
reduce the program memory storage requirements. The
K10 notation in Table 1 denotes AT94K10 devices
which have an array size of 24×24 PLBs while the K40

denotes AT94K40 devices which have a 48×48 PLB
array. The column showing processor execution cycles
for K40 is greater by a factor of approximately four
indicating that the increase in reconfiguration time and
retrieval of results is linear with the device size.

Subroutines for applying the diagnostic procedure
to the BIST results and for communicating with the
higher controlling source also increase the program
memory storage requirements. Also, due to the addi-
tional bits added from the tool that generates the final
bit-stream, the actual file size to be downloaded to the
program memory of the AVR increases from 4.7 Kbytes
to 12.6 Kbytes as summarized in Table 2.

Table 2. Actual Download File Size (KBytes)
All

Configs
On-Chip Diag-
nosis + other

Added by System De-
signer Bit Generation

Total

4.676 2.5 5.419 12.6

With the internal BIST reconfiguration process
executed by the AVR core, we achieve much better ex-
ternal memory storage requirements and faster testing
time when compared to downloading individual BIST
configurations into the FPGA. This is summarized in
Table 3 for external memory storage and in Table 4 for
total test time. The data shown in these tables are for a
AT94K40 device with a 48×48 PLB array.

Table 3. Total Memory Reduction

Approach Total Configuration
File Size

Memory
Reduction

Conventional 65 Kbytes × 16 files 1
Processor Only 12.6 Kbytes × 1 file 83.1

Table 4. Total Test Time and Speed up
 Download Processor Speed up Factor

Download
(1MHz) 8.371 sec. 0.101 sec. 83.077

Run-time
(25MHz) 0.016 sec. 0.085 sec. 0.193

Total BIST
Time 8.387 sec. 0.186 sec. 45.125

The total test time is calculated by adding the
download time and BIST execution time (or run-time as
listed in Table 4). The external download is done using
a maximum clock speed of 1MHz since all external
downloads which involve a check for download errors
(the check-sum function) at the FPGA can run at a
maximum configuration clock frequency of 1 MHz [2].
Since the AVR can run at 25 MHz clock speed, BIST
execution time is calculated assuming that the BIST
clock runs at 25 MHz. This data was obtained from
simulation on the Code Vision AVR software program
for both conventional and processor-only cases and was
also verified against actual download and execution in
several AT94K40 devices.

As a result of the single AVR program for BIST
reconfiguration, we obtain a factor of 45 speed-up in
total test time and a factor of 83 reduction in external
memory requirements for storing BIST configurations.
It is interesting to note that the run-time in Table 4 in-
creases for AVR BIST reconfiguration. This is due to
the fact that the embedded processor core is doing all
the reconfiguration, execution, and retrieval of BIST
results while in the download of BIST configurations,
the processor core is only used to reconfigure the ORAs
into shift registers as the end of the BIST sequence for
retrieval of the test results. With this consideration, the
increase in run-time seems surprisingly small.

6. PROCESSOR-BASED BIST FOR FREE RAMS

The same idea of a single program to reconfigure
the FPGA for BIST, execute the BIST sequence, and
retrieve the BIST results can also be applied to other
resources like RAMs. The embedded free RAMs in
AT94K series SoCs can operate in four modes: single-
port synchronous and asynchronous, or dual-port syn-
chronous and asynchronous modes. However, three
BIST configurations are sufficient to completely test the
free RAMs [3]. These three modes of operation and
their respective test algorithms are summarize in Table
5. Note that Background Data Sequences (BDS) which
detect coupling and pattern sensitive faults need only be
used in one of the BIST configurations. The addition of
BDS in all configurations not only adds redundancy to
fault detection but also increases the total test-time.

Table 5. Test Algorithms free RAMs
Mode of Operation Test Algorithm

Single-port synchronous March LR w/ BDS [8]
Single-port asynchronous March Y w/o BDS [7]

Dual-port synchronous DPR test w/o BDS [9]

Unlike logic BIST, wherein the TPG is a counter
in all configurations, the TPGs in three RAM BIST con-
figurations are irregular, dissimilar and much more
complex taking up a large number of PLBs. In order to
simplify the reconfiguration process, the TPG is moved
into AVR leaving RAMs, ORAs, and the interconnec-
tion between them inside the FPGA core. The TPG data
is registered inside the FPGA core as the data bus over
which the AVR and the FPGA communicate is only 8-
bits wide. Testing the free RAMs in all the configura-
tions involves registering the TPG signals from the
AVR and then clocking the FPGA core from the AVR.
This sequence of registering TPG signals and clocking
the FPGA core is repeated until the respective test algo-
rithm (Table 5) is completed. At the end of the BIST
sequence, the ORA results are scanned out for
faulty/fault-free status determination and/or diagnosis.

In order to ease the reconfiguration process when
moving from one RAM BIST configuration to another,

some redundancy is added in the logic and routing of
the BIST circuitry as illustrated in Figure 6. The design
of the ORA used in single-port BIST configurations is
shown in Figure 6 (a). The scan chain is integrated in
the ORA, unlike logic BIST, due to availability of suffi-
cient logic resources. In single-port mode, there is one
port which is used for reading and writing data. As a
result, an active-high tri-state buffer is used which is
controlled by an active-low read enable (OEN) that also
goes to the RAM. The TPG data is written into the
RAM during a write operation and the data from the
RAM is compared with the TPG data (expected data
generated by the TPG) during a read operation. There
are two additional data lines as indicated in Figure 6 (a)
which are routed but not connected to any PLB and thus
are redundant.

Data from RAMi-1

Data from RAMi

PLB
Shift Data

Shift Control Clk Reset

Shift Data
to Next
ORA

PLB

TPG Data

OEN

Data to/from RAMi

(a)

PLB
Shift Data

Shift Control Clk Reset

Shift Data
to Next
ORA

PLB

TPG Data

“1”

Data to RAMi

Data from RAMi-1

Data from RAMi

(b)

Figure 6. RAM BIST ORA Reconfiguration a) Sin-
gle-port Modes b) Dual-port Mode

The design of the ORA used to test the dual-port
RAM mode is illustrated in Figure 6(b). Comparison of
the outputs of adjacent RAMs, similar to the BUTs in
logic BIST, is used in this mode instead of using com-
parison with expected data as in the single-port RAM
BIST. The tri-state bus is always enabled and connects
TPG data to the write port of dual-port free RAM. The
data read from the RAM is compared with the data from
an adjacent RAM and a logic 1 is latch in case of any
mismatch due to faulty RAM(s). While the tri-state
buffer is redundant in dual-port mode, routing of read
data from two free RAMs in redundant in single-port
modes. Also, the read address that comes from the reg-
istered TPG is routed in all configurations and is redun-
dant in single-port RAM BIST modes. However, the
redundancy makes the reconfiguration by the embedded
processor core much easier since the reconfiguration

from one RAM BIST mode to another requires only
modification of internal routing of the PLBs used to
construct the ORAs, as illustrated in Figure 6. No other
changes are required, since the TPG signals are supplied
by the AVR and since the signals are already routed to
all RAMs and ORAs.

The approach used to develop the program and
debug the subroutines that generate the initial configura-
tion is similar to the one used for logic BIST. The bit-
streams generated using a mixed MGL-VHDL approach
[3][4] serve as a baseline in generating the initial BIST
configuration. Combining all the three configurations
into a single program improves both the test-time and
memory required to store the BIST configurations by
about a factor of 9 when compared to three BIST con-
figurations which are downloaded individually to com-
pletely test the free RAMs [3]. While this result is not as
impressive as in the case of logic BIST, we are replac-
ing only three RAM BIST configurations with a single
program versus replacing 16 logic BIST configurations
with a single program. However, the program and sub-
routines developed for RAM BIST reconfiguration and
testing can be combined with those developed for logic
BIST to achieve an even better speed-up in testing time
and overall reduction in external memory storage
requirements.

7. SUMMARY AND CONCLUSIONS

We have presented the improvements in the total
test time and reductions in BIST configuration memory
storage requirements as a result of the development of a
single program that executes on the embedded processor
core for the complete reconfiguration, execution, and
retrieval of test results during BIST of the programma-
ble logic resources in the FPGA core of the Atmel
AT94K series configurable SoC. The ability to perform
dynamic partial reconfiguration of embedded FPGA
core from the embedded processor core provides a ma-
jor testing capability, while the non-existent configura-
tion memory read-back capability makes the SoC test-
ing (and test development) much more difficult. By hav-
ing a single program downloaded into the program
memory of the embedded processor to reconfigure the
FPGA core algorithmically, downloads to the FPGA
core are eliminated, resulting in significant reduction in
the total testing time (a factor of 45 in this case) as well

as the configuration memory required (a factor of 83 in
this case) compared to the previous work done in
[3][4][6]. The single AVR BIST and diagnostic program
is sufficiently small to reside on-chip for on-demand
BIST and diagnosis of the programmable logic re-
sources, including PLBs and RAMs, in the FPGA core
of the SoC.

REFERENCES

[1] M. Abramovici and C. Stroud, “BIST-Based Test
and Diagnosis of FPGA Logic Blocks,” IEEE Trans.
on VLSI Systems, Vol. 9, No. 1, pp. 159-172, 2001

[2] __, “AT94K Series Field Programmable System
Level Integrated Circuit,” Datasheet, Atmel Corp.,
2001

[3] C. Stroud, J. Sunwoo, S. Garimella and J. Harris,
“Built-In Self-Test for System-on-Chip: A Case
Study,” Proc. IEEE International Test Conf., pp.
837-846, 2004.

[4] C. Stroud, S. Garimella, J. Sunwoo, “On-Chip
BIST-Based Diagnosis of Embedded Programmable
Logic Cores in System-on-Chip Devices,” Proc.
ISCA International Conf. on Computers and Their
Applications, pp. 308-313, 2005

[5] S. Donthi and R. Haggard, “A Survey of dynami-
cally reconfigurable FPGA devices,” Proc. South-
eastern Symp. on System Theory, pp. 422-426, 2003

[6] C. Stroud, J. Harris, S. Garimella and J. Sunwoo,
“BIST Configurations for Atmel FPGAs Using
MGL,” Proc. IEEE North Atlantic Test Workshop,
pp. 83-90, 2004

[7] C. Stroud, A Designer’s Guide to Built-In Self-Test,
Kluwer Academic Publishers, Boston, 2002

[8] A. Van de Goor, G. Gaydadjiev, V. Jarmolik and V.
Mikitjuk, “March LR: A Test for Realistic Linked
Faults,” Proc. IEEE VLSI Test Symp., pp. 272-280,
1996

[9] C.E. Stroud, K.N. Leach and T.A. Slaughter, “BIST
for Xilinx 4000 and Spartan Series FPGAs: A Case
Study,” Proc IEEE International Test Conf., pp.
1258-1268, 2003

