
Built-In Self-Test Configurations for Atmel FPGAs Using Macro Generation Language
Charles Stroud, Jonathan Harris, Srinivas Garimella, and John Sunwoo

Dept. of Electrical and Computer Engineering
Auburn University

Auburn, AL 36849-5201
strouce/harri34/garimsm/sunwojo@auburn.edu

ABSTRACT: The development and automatic generation
of Built-In Self-Test (BIST) configurations for Atmel
AT40K series Field Programmable Gate Arrays
(FPGAs) are described. These BIST configurations
completely test the programmable logic and routing
resources in the core of the FPGA along with the dedi-
cated Random Access Memories (RAMs) dispersed
within the array. The BIST configurations are generated
using Atmel’s Macro Generation Language (MGL) for
any size FPGA. The advantages and limitations of this
approach are discussed.1

1. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) consist
of a two-dimensional array of Programmable Logic
Blocks (PLBs) interconnected by a programmable rout-
ing network and surrounded by programmable in-
put/output (I/O) cells. In recent FPGAs, additional dedi-
cated Random Access Memories (RAMs) are provided
within the array for data storage functions. The system
function performed by the FPGA is established by the
contents of the configuration memory such that an
FPGA can perform a wide variety of system functions
by rewriting the configuration memory. The PLBs con-
sist of sections of the configuration memory that can be
used as Look-Up Tables (LUTs) to perform combina-
tional logic functions. In addition, the PLBs contain
flip-flops to perform sequential logic functions.

While attractive to designers, the programmability
of FPGAs poses serious testing problems due to the
large number of configurations required to test all pos-
sible modes of operation. One solution is to reprogram
the FPGA with BIST circuitry to allow the FPGA to test
itself without the need for expensive external test equip-
ment [1]. When completely tested and found to be fault-
free, the FPGA can be safely reprogrammed to perform
the intended system function(s) prior to normal system
operation. In the event that a fault is detected by the
BIST, additional BIST-based diagnostic configurations
can be downloaded into the FPGA to facilitate identifi-
cation of the faulty resource(s) and reconfiguration of
the FPGA to avoid the faults during on-line operation
[1]. BIST for FPGAs can be used at all levels of testing
(from wafer to system-level testing) without the area
overhead and performance penalties associated with

1 This work is sponsored by National Security Agency.

BIST approaches for Application Specific Integrated
Circuits (ASICs) [2].

One problem with BIST for FPGAs is that while the
basic BIST architecture is generic, the specific test con-
figurations are not [3]. The BIST configurations for the
PLB and interconnect resources must be developed for
each specific FPGA architecture. Once developed, these
BIST configurations can be applied to all devices of the
same size and type. Scaling the BIST configurations to
fit different size FPGAs in the same family is relatively
straight forward. However, developing BIST configura-
tions for a new family of FPGAs requires development
of new test configurations specific to that architecture.
Therefore, the challenge is to develop a mechanism to
automatically generate the BIST configurations for a
given FPGA series architecture. Fortunately, Atmel’s
Macro Generation Language (MGL), provided as part of
their Integrated Development System (IDS), is a pro-
gramming language specifically for the development of
regular and parameterized circuits to be implemented in
their AT40K series FPGA. As a result, MGL has the
potential for supporting automatic generation of BIST
configurations for these FPGAs.

In this paper, we describe development of programs
in MGL that are capable of automatic generation of all
BIST configurations needed to test the core of any At-
mel AT40K series FPGA as well as the FPGA core in
AT94K series System-on-Chips (SoCs). We begin with
a presentation of background material in Section 2 in-
cluding the architecture and operation of BIST ap-
proaches for FPGAs, an overview of the architecture of
Atmel FPGAs, and an overview of MGL. We then de-
scribe development of MGL-based generation of BIST
configurations, including fault coverage and problems
encountered, for programmable logic, RAMs, and inter-
connect resources in Sections 3, 4 and 5, respectively.
The paper is summarized in Section 6.

2. BACKGROUND

2.1. Overview of FPGA BIST
In most approaches to BIST of programmable logic

and interconnect resources in FPGAs, some of the PLBs
are configured as Test Pattern Generators (TPGs) and
Output Response Analyzers (ORAs). While both logic
and routing resources are required to implement an
FPGA BIST technique, the specific target of the testing
is either the logic blocks under test (BUTs) or intercon-

nect wires under test (WUTs) [1]-[10]. The TPGs for
logic BIST are typically Linear Feedback Shift Regis-
ters or counters to generate pseudo-exhaustive test pat-
terns [1] while TPGs for routing BIST typically gener-
ate exhaustive test patterns [9] or walking test patterns
[7]. Parity check ORAs have been used for routing
BIST [6]. Due to the replication of the PLBs and their
associated routing in the FPGA, comparison-based
ORAs are effective and offer good diagnostic resolution
for both logic and routing BIST [1][9].

The most common logic BIST architecture is to ar-
range the BUTs and ORAs in alternating columns (or
rows) [1]. Multiple, identical TPGs drive alternating
columns (or rows) of BUTs with identical test patterns
while the output responses of these identically pro-
grammed BUTs are compared in the neighboring col-
umns (or rows) of ORAs. The BUTs are repeatedly re-
configured in their various modes of operation until the
BUTs are completely tested. The roles of the PLBs are
then reversed by flipping the architecture such that the
PLBs that were previously tested as BUTs become the
TPGs and ORAs in order to test the PLBs that were
previously TPGs and ORAs [1]. Given the number of
test configurations required to completely test a PLB,
NBUT, the minimum number of test configurations for a
complete logic BIST is 2NBUT when at least half of the
PLBs are BUTs during any given test session. The value
of NBUT is a function of the architecture and functional-
ity of the PLB and is typically on the order of 10 to 15
for PLBs such as those in the Lattice Semiconductor
ORCA 2C/2CA [1] and the Xilinx 4000 and Spartan
series FPGAs [4]. The only prior work in logic BIST for
Atmel AT40K series FPGAs was for the FPGA core of
the AT94K series SoC (or Field Programmable System
Level Integrated Circuit – FPSLIC, in Atmel terminol-
ogy [12]) where the microprocessor core in the SoC was
used for on-line testing of the LUTs of the PLBs using
two test configurations per LUT [8]. A total of 2N2 test
configurations (where N is the number of PLBs in one
dimension of the array) were required since the PLBs
were tested one at a time. It should also be noted that
the PLB was not completely tested in this approach.

A number of routing BIST architectures have been
developed including a comparison-based approach [9], a
parity-based approach [6], and an oscillation-based de-
lay-fault testing approach [11]. In the most commonly
implemented routing BIST approach, small Self-Test
AReas (STARs) are constructed with PLBs used to im-
plement TPGs to source identical test patterns (either
walking [7] or exhaustive [9] patterns) to two sets of
WUTs that are then compared by the ORA at the other
end of the WUTs. The FPGA is filled with these STARs
to facilitate concurrent testing of as many routing re-
sources as possible in order to minimize the total num-
ber of test configurations for complete testing of the
interconnect network for the various faults that can oc-
cur. These faults include shorts and opens in the wire
segments, wire segments stuck-at-1 and stuck-at-0,
stuck-on and stuck-off faults in the various types of
Programmable Interconnect Points (PIPs) or switches
that are used to program the interconnect network as
well as stuck-at faults in the configuration memory bits
used to program the PIPs [2]. Vertical and horizontal
STARs test vertical and horizontal interconnect re-
sources, respectively. It should be noted that the STAR-
based technique can be used with the parity-based BIST
approach in [6]. Since the programmable routing re-
sources typically account for a larger portion of the
FPGA than the PLBs, the number of test configurations
is generally larger as well. The total number of test con-
figurations for complete testing is a function of the in-
terconnect network architecture and have ranged from
approximately 45 for the Lattice ORCA 2C and 2CA
series FPGAs [9] to over 200 for the Xilinx 4000 and
Spartan series FPGAs [4]. We are not currently aware of
any prior work in routing BIST for Atmel FPGAs.

2.2. Overview of Atmel’s FPGAs and MGL
The Atmel FPGA consists of a symmetrical array of

identical cells throughout the architecture, as illustrated
in Figure 1. Each PLB has two 3-input LUTs, a
Set/Reset D Flip-Flop (FF), and several multiplexers
that provide a variety of functionality. For every 4×4
array of logic cells, there is one 32×4 RAM. The RAM
can be operated in single port or dual port mode and

. . .

. . .

I/O Pad

Repeater
Row

FreeRAM

Logic Cell

Repeater
Column Cell H

or
iz

on
ta

l B
us

in
g

Pl
an

eVertical Busing Plane

(b) Cell-to-cell
Connections

(c) Cell-to-bus
Connections

(a) Symmetrical Array
Surrounded by I/O

Figure 3.1. Atmel AT40K Series FPGA Architecture

YX

Y

Y Y
X

X X

8x1
LUT

8x1
LUT

X Y

YX

D
CLK

(d) Cell
X (Diagonal)

Y (Orthogonal)

RST To
/F

ro
m

 G
lo

ba
l B

us
es

Figure 1. Atmel FPGA architecture

there is no use of logic resources in any PLB when ac-
cessing the SRAM. Dedicated local routing resources
allow direct horizontal, vertical, and diagonal PLB-to-
PLB connections without using global routing re-
sources. Five vertical and five horizontal bus planes are
associated with each PLB, where each plane consists of
two express lines and one local line that can be accessed
by any of the four inputs to the PLB or by the output
from the PLB. Bus repeaters are placed within the
global routing resources every four cells to prevent sig-
nal degradation for long and/or heavily loaded nets.

Given the time involved in developing BIST con-
figurations for a given FPGA architecture and the large
number of BIST configurations required to completely
test both the logic and routing resources, it is desirable
to develop a mechanism that facilitates automatic gen-
eration of the BIST configurations for all sizes of
FPGAs in a given series. This has been done previously
for Xilinx 4000 and Spartan series FPGAs using Xilinx
Design Language (XDL) [4] and for Lattice ORCA 2C
and 2CA series FPGAs using a language similar to XDL
[3]. These languages are a textual netlist-like description
of the programming and interconnection of the PLBs for
a given configuration of the FPGA. Independent pro-
grams were developed in C and Perl to automatically
generate the XDL description for each BIST configura-
tion based on the array size of the particular FPGA [4].
Each XDL file was then converted to a configuration bit
file through programs provided in the FPGA tool suite.

MGL, on the other hand, provides users of the
AT40K FPGAs and AT94K FPGA cores with an inte-
grated method for creating parameterized, user-defined
circuits to meet desired design specifications. In order to
configure a PLB, MGL requires the use of either prede-
fined macros (gates, multiplexers, flip-flops, etc.) or
dynamic macros. Dynamic macros give the most versa-
tility in defining the functionality of a PLB ranging
from any 2-input to 4-input logic function in various
combinations of registered or non-registered outputs and
feedback [13]. The two look-up tables (LUTs) in the
PLB are programmed through Boolean expressions de-
clared within the dynamic macro instantiation. How-
ever, user control over the PLBs is limited to the dy-
namic macros and no further control is provided by
MGL. These dynamic macros can be instantiated
through the available graphical interface in IDS, or
through the use of MGL. The former must be instanti-
ated each time a design is created whereas the latter is
easily automated since MGL is similar to a program-
ming language and may be parameterized and used to
create designs in any of the Atmel AT40K FPGAs and
AT94K FPGA cores.

MGL is structured such that basic constructs typical
to most programming or hardware description lan-

guages, such as VHDL, may be utilized. As in VHDL,
the language in MGL is strongly typed, meaning that all
objects must be assigned a specific type [14]. In contrast
to VHDL, however, MGL is case-sensitive, such that
function() and Function() are distinct and independent
[14]. In order to instantiate a design using MGL in a
particular FPGA array, three components must exist in
the MGL code: user-defined functions (i.e., BUTs,
ORAs, TPGs), the target FPGA device (i.e., AT40Kxx),
and the inputs and outputs to the circuit (i.e., clock in-
put, reset input, pass/fail output) [14]. Pre-processor
directives, global variables and constants may also be
defined.

To illustrate the format of MGL and its similarities
to programming and hardware description languages,
the example given in Figure 2 was taken from our logic
BIST MGL code. This example MGL code instantiates
a column of ORAs which receive inputs from the out-
puts of the BUTs to the left (denoted BL) and right (BR)
of the ORA, in addition to clock and reset inputs. To
begin, the function is declared and a target FPGA device
is selected, in this case an AT40K40 FPGA in a 208-pin
package. To parameterize the instantiation of the col-
umn of ORAs, a variable, ARRAY_SIZE, is declared and
is determined by the built-in MGL sizeof() function
which returns the size of one dimension of the PLB ar-
ray. Two for loops are next used to create all of the re-
spective I/O ports and then all of the ORA instances
which are placed in column 2 of the FPGA. The connec-

function ORAs(name : string) : macro
begin
fpga := setdevice("AT40K40-2DQI");
ARRAY_SIZE := sizeof(fpga);
interface ORAsIO of ORAs is
 inputports("CLK", "RST");
 for i in 0 to ARRAY_SIZE loop
 inputports(“BL”{0}”_”{i}, “BR” ”{0}”_”{i});
 outputports("P/F" + i);
 end loop;
end interface;
contents of ORAs is
for i in 0 to ARRAY_SIZE loop
instance "ORAcell" + i of ORAcell is
 location(2,i);
 connections(
 "CLK" -> "CLK",
 "RST" -> "RST",
 "BL" -> "BL"{1}"_"{i},
 "BR" -> "BR"{3}"_"{i},
 "P/F" -> "P/F");
 placeports("P/F" -> "Y");
end instance;
end loop;
end contents;
return(ORAs);
end;//ORAs function complete

Figure 2. Example MGL program

tions statement defines the I/O connections of the re-
spective ORA PLB.

The focus of this paper is the development of pa-
rameterized MGL programs that will automatically gen-
erate BIST configurations for any size AT40K FPGA or
AT94K FPGA core. In the following sections, we de-
scribe the use of MGL and the resultant BIST configu-
rations for the logic, RAM, and routing resources. In
addition, we discuss MGL capabilities and limitations
observed during this development.

3. LOGIC BIST

The logic BIST configurations developed for the
Atmel AT40K series FPGAs and the FPGA core in the
Atmel AT94K series SoCs consisted of five test phases,
each with a different dynamic macro instantiated as the
BUTs. These BIST configurations are automatically
generated with parameterized MGL code. With the ad-
justment of a few parameters in the MGL code, the
BIST configurations can be generated for any desired
size FPGA or FPGA core. The architecture for the logic
BIST test sessions are illustrated in Figure 3a and 3b
with a 5-bit up-counter used for each TPG to drive the
five inputs to each BUT. The logic BIST configurations
are oriented along columns due to column-based bank
clocks and resets for every group of four PLBs in the
column. For example, in a row-based BIST architecture,
the reset to the BUTs cannot be tested without resetting
the ORAs and losing detected fault information. The X
output of a BUT connects to any of four diagonally ad-
jacent ORAs while the Y output connects any of four
orthogonally adjacent ORAs. In order to observe both
outputs of the BUTs, an alternating routing scheme was
devised (illustrated in Figure 3c and 3d) in which con-
nections between the BUTs and the comparison-based
ORAs are alternated between each BIST configuration.

Figure 3. Logic BIST architecture and connections
Five BUT configurations were chosen from the dy-

namic macros available in MGL that yielded the maxi-
mum fault coverage. Fault simulations were performed
considering the alternating BUT-to-ORA connection
scheme shown in Figure 3c and 3d to produce the plot

in Figure 4 showing both individual and cumulative
fault coverage through the sequence of the five BUT
configurations. The cumulative single stuck-at gate-
level fault coverage was 98% for BUTs in the middle of
the array. For those BUTs along the edges of the FPGA
array, fault coverages of 97.3% and 97.8% were ob-
tained for the two left-most and right-most columns,
respectively. The macros used in the five BUT configu-
rations are summarized in Figure 4 and Table 1. Limita-
tions of MGL dynamic macros prevent control of all
configuration bits in the BUTs such that only certain
combinations of configuration bits exist within the in-
stantiation of dynamic macros; this limits the maximum
fault coverage to less than 100% as a result of the in-
visible logic problem described in [1].

0

20

40

60

80

100

1 2 3 4 5
BUT Configuration

Fa
ul

t C
ov

er
ag

e
(%

) Individual FC
Cumulative FC

F
G
E
N
1
R

F
G
E
N
1

F
G
E
N
1
R
F

M
G
E
N

F
G
E
N
2
F

Figure 4. Logic BIST fault coverage

Table 1. Logic BIST Configurations
Config PLB Mode of Operation Macro

1 4-input LUT, rising-edge FF, active-
high reset FGEN1R

2 4-input LUT FGEN1

3 4-input LUT, falling-edge FF with
sequential feedback, active-low set FGEN1RF

4 Multliplier-based LUTs MGEN

5 Two 3-input LUTs with combina-
tional feedback FGEN2F

Due to the small size of the PLBs in the AT40K se-
ries FPGA, it is not possible to implement a compari-
son-based ORA with a shift register capability for re-
trieving the results at the end of the BIST sequence. One
option is to have a 2-PLB ORA implementation, one
PLB for comparison of four BUT outputs and the other
PLB for latching mismatches and shifting out results, as
illustrated in Figure 5a, but this reduces diagnostic reso-
lution. However, since the device can be partially recon-
figured without affecting the values held within the PLB
flip-flop using the synchronous RAM configuration
mode [12], a 1-PLB ORA which compares two BUT

a) Test Session 1 b) Test Session 2

=TPG
=BUT
=ORA

d) Routing Scheme 2c) Routing Scheme 1

= X direct
= Y direct

outputs and latches mismatches (Figure 5b) can be par-
tially reconfigured as a shift register (Figure 5c) upon
completion of the BIST sequence to retrieve the ORA
results. We use this dynamic partial reconfiguration
approach for creating the shift register while maintain-
ing maximum diagnostic resolution.

Figure 5. ORA/shift register implementations

An evaluation of the propagation delay for each of
the five logic BIST configurations was performed to
determine the maximum clock frequency for the various
array sizes in the AT40K series FPGAs. This was done
by using the Atmel Figaro IDS software to evaluate the
worst case delays for each BUT configuration and array
size. The various sizes of the AT40Kxx FPGAs are: 05
(16×16 PLBs), 10 (24×24 PLBs), 20 (32×32 PLBs), and
40 (48×48 PLBs). Figure 6 gives the timing analysis
results in terms of the maximum BIST clock frequency.
As indicated, the maximum BIST clock frequency for
the AT40K40 is approximately 27MHz, while the
AT40K05 device can be operated at a clock frequency
of greater than 60MHz for all five BIST configurations.

0

10

20

30

40

50

60

70

80

1 2 3 4 5
BUT Configuration

M
ax

 C
lo

ck
 F

re
qu

en
cy

 (M
H

z) 40K05 40K10 40K20 40K40

Figure 6. Maximum clock frequency for logic BIST

4. RAM BIST

The embedded RAMs (referred to as “free RAMs”
in Atmel terminology) inside the FPGA core are distrib-
uted over the entire array. Each 4×4 array of PLBs share
a 32×4-bit RAM. All these RAMs except those in the
rightmost column can be configured as both single-port

and dual-port RAMs and can operate in either synchro-
nous or asynchronous mode. The dual-port RAMs are
arranged in such a way that they have a common read
address with one of their adjacent RAMs and a common
write address with the other. The dual-port RAMs are
not true dual-port RAMs in that they have one port
dedicated for reading and another for writing. Reading
and writing the dual-ports of the RAM are independent
of each other and reading the RAM is completely asyn-
chronous. Therefore, complex March algorithms used to
test true dual-port RAMs, such as described in [17],
need not be used. The dual-port RAM test algorithm
used in [4] was modified to test the Atmel free RAMs.
This algorithm (denoted DPR test) is given in Table 2 in
terms of the operations performed on each port
(write:read); ‘n’ denotes no operation on that port.

Table 2. RAM BIST Configurations and Algorithms
Mode Config Algorithm
Sync

Dual-Port
1) DPR test ⇑⇓(w0:n); ⇓(n:r0); ⇑(w1:⇓r1);

⇓(w0:⇑r0);
Sync

Single-Port
2) March-
LR w/BDS

⇑⇓(w0000); ⇓(r0000; w1111);
⇑(r1111; w0000; r0000; r0000;
w1111); ⇑(r1111; w0000);
⇑(r0000; w1111; r1111; r1111;
w0000); ⇑(r0000;w0101;w1010;
r1010); ⇓(r1010; w0101; r0101);
⇑(r0101; w0011; w1100; r1100);
⇓(r1100;w0011; r0011);⇑(r0011);

Async
Single-Port

3) March-Y
w/o BDS

⇑⇓(w0); ⇑(r0;w1;r1);
⇓(r1;w0;r0); ⇑(r0);

Pattern sensitivity and intra-word coupling faults as-
sociated with bit-oriented memories are tested in the
single-port RAM mode. This is because all RAMs are
tested in the single-port mode, including the RAMs
along the right hand column of the array. The March-LR
algorithm described in [19] is used to test the RAMs in
the synchronous single-port mode. The March-LR algo-
rithm is modified as described in [20] to test word-
oriented memories by including background data se-
quences (BDS). The March-LR algorithm used to test
the single-port RAMs in synchronous mode is given in
Table 2. The March-Y algorithm without background
data sequences is used to test the single-port RAMs in
asynchronous mode and is also given in Table 2 where
r0/w0 indicates reading or writing all 0s in the word.

All of the RAMs in the FPGA are tested in parallel
using the three test configurations summarized in Table
2. The total fault coverage obtained is 99.9%. The dual-
port RAMs are not tested in asynchronous mode of op-
eration because the port which is dedicated for reading
is always asynchronous and is tested during synchro-
nous mode. In all three test configurations, a single TPG
is used to produce the read and write addresses as well
as the write data for the RAMs. A comparison-based
ORA similar to the one used for logic BIST is used. In
the dual-port RAM test, the ORAs compare output data

a) 2-PLB ORA
Shift Control

Shift Data

To Next ORA

shift BUT BUT

BUT BUT comp

b) 1-PLB ORA

comp

BUT

Shift

To Next ORA

BUT

shift

BUT

Shift

To Next ORA

BUT

c) reconfigured ORA

global routing local routing

from two adjacent RAMs as illustrated in Figure 7a. In
the single-port RAM tests, the ORAs compare output
data from each RAM with expected results generated by
the TPG as illustrated in Figure 7b. All ORAs are con-
nected in the form of a shift register to retrieve the re-
sults from the ORAs at the completion of the BIST se-
quence. Diagnostic resolution with this approach can
identify the faulty RAM as well as the faulty data bit
associated with that RAM.

Figure 7. RAM BIST architectures

Unlike logic BIST, VHDL was initially used to im-
plement the RAM BIST including the TPG and ORAs.
A parameterized VHDL model is developed to test
RAMs associated with any array size. This approach
gives a degree of freedom in implementing logic at a
higher level instead of using the PLBs and dynamic
macros of MGL as basic elements. As a result, the pa-
rameterized VHDL could be ported to test the RAMs in
other FPGAs, such as the block RAMs in Xilinx Virtex
I/II and Spartan II/III series FPGAs [15]. However, this
VHDL-based approach poses problems during synthesis
in the Atmel FPGA. Specifically, the VHDL-based ap-
proach requires that the RAMs be interactively placed at
desired locations so that the faulty RAMs can be identi-
fied directly from diagnostic results. The ORAs must
also be manually placed to resolve routing contentions
due to the heavy use of routing resources by the RAM
BIST. Therefore, the MGL-based approach used for
logic BIST is better in this aspect. Using MGL, the
regular structure portion of the RAM BIST logic con-
sisting of the RAMs and the ORAs can be exploited to
eliminate contention for routing resources and also to
place the RAMs and ORAs at desired locations for more
efficient diagnosis based on failing BIST results.

Benefits of MGL over VHDL were more evident
when testing the RAM in single-port mode. A tri-state
buffer is required to read and write data to and from
RAMs in single-port mode. Synthesis of the VHDL
model used a single PLB for implementing a tri-state
buffer and two PLBs for the ORA requiring twelve out
of sixteen PLBs in every 4×4 array and leaving only
four PLBs in every array for the TPG. Alternatively,
MGL was used to place and route the ORA along with
the tri-state buffer in eight PLBs. The TPG was then
modeled using VHDL with automatic placement and
routing of the TPG PLBs performed by the synthesis
tool. In the single-port RAM BIST, the TPG also gener-
ates the expected data. Therefore, instead of comparing

data from adjacent RAMs, the ORA compares data from
a RAM with the expected data from the TPG as shown
in Figure 7b. Therefore, the use of MGL not only elimi-
nated manual placement of ORAs and RAMs but also
helped in using both logic and routing resources more
efficiently. Furthermore, the same MGL program is
used to generate all single-port RAM BIST algorithms
with the simple insertion of the TPG VHDL model as-
sociated with the desired test algorithm.

The March-LR algorithm with background data se-
quences is used the test the RAMs in single-port, syn-
chronous mode of operation and requires 153 PLBs for
the TPG implementation. The March-Y algorithm
(without background data sequences) is used for testing
the single-port RAMs in the asynchronous mode of op-
eration and requires only 18 PLBs for the TPG. The
smallest AT40K device (AT40K05) has only 16×16
PLBs and, as a result, cannot fit the March-LR TPG
when all RAMs are being tested in a single BIST con-
figuration. One alternative is to apply the single-port
RAM synchronous mode test configuration twice, test-
ing half of the RAMs in each configuration. Another
alternative is to use a TPG implementing a March-Y
algorithm with background data sequences, which uses
only 67 PLBs, to test all RAMs concurrently in single-
port synchronous mode of operation in the smallest At-
mel device. In this March-Y approach, some pattern
sensitivity and intra-word coupling fault detection capa-
bility is traded off for reduced testing time.

5. ROUTING BIST

The size of the ORA that can be implemented in the
Atmel AT40K PLB is limited to 3-inputs to allow for a
feedback to latch any incorrect responses to the test pat-
terns applied. As a result, the comparison-based ORA
used for routing BIST in [4] and [9] can only be con-
structed to compare two wires in an Atmel AT40K PLB
such that each set of WUTs in the comparison-based
BIST approach consists of a single wire. Therefore, for
fine-grain FPGA architectures like the Atmel AT40K
series FPGA [18], we find that a modified version of the
parity-based BIST approach originally proposed in [6]
facilitates concurrent testing of more routing resources
than the comparison-based routing BIST approach. The
primary modification is the use of a small counter (also
more compatible with fine-grain FPGA architectures)
and using the parity bit as an additional test pattern.

 Since the PLB can implement only one cell of a
counter or LFSR, a TPG consists of two PLBs used to
implement a 2-bit up-counter with an additional PLB to
generate even parity over the 2-bit count value. Another
TPG consists of a 2-bit down counter with an odd parity
generator. In both cases, the generated parity bit is used
as a third test pattern sent over the set of WUTs since
between any two bits in the 3-bit test pattern sequence

=TPG
=RAM
=ORA

a) DPRAM test b) SPRAM test

there exist at least two vectors with opposite logic val-
ues (0,1) and (1,0). This is necessary for the detection of
shorts (bridging faults) in the WUTs. Note that stuck-on
and stuck-off PIPs behave as shorts and opens, respec-
tively, in WUTs and are detected as long as the neces-
sary test conditions are set up on wire segments not un-
der test [9]. The ORA then consists of a 3-input exclu-
sive-OR or exclusive-NOR to check for even or odd
parity, respectively, on the 2-bit count value plus the
parity bit depending on the TPG (up-count with even
parity or down-count with odd parity). Any detected
errors are latched by the feedback and OR gate of the
ORA, as illustrated in Figure 8. In most configurations,
a single TPG drives multiple sets of WUTs and ORAs
in order to maximize the routing resources under test
during any given BIST configuration and, therefore,
helping to minimize the number of routing BIST con-
figurations.

Figure 8. Routing BIST architecture
The local routing resources at the inputs of the At-

mel PLB can be considered as multiplexers with up to
nine inputs (five horizontal/vertical bus connections and
four direct connections). This requires a minimum of
nine routing BIST configurations for complete testing.
The five vertical bus connections to the input multiplex-
ers are completely tested during logic BIST by cycling
through the five vertical bus TPG-to-BUT connections
during each of the five logic BIST configurations. The
five horizontal bus connections can be tested by rotating
two of the logic BIST configurations by 90 degrees,
each configuration testing three of the five horizontal
bus connections. As in the case of logic BIST, two test
sessions consisting of two test configurations each must
be applied to test the horizontal bus connections to all
PLBs in the array for a total of four test configurations.
The direct Y connections to the PLBs are also com-
pletely tested by these same test configurations along
with the set of logic BIST configurations. The direct X
connections must be tested with additional test configu-
rations using the architecture shown in Figure 8 where
the WUTs zig-zag through the PLB array between the
TPG and ORA. This basic structure is rotated through
the four directions for a total of four test configurations.
As a result, a total eight test configurations are required,
in addition to the logic BIST configurations, to com-
pletely test the local routing resources.

In the global routing resources, the vertical and hori-
zontal repeater cells can be considered as miniature ver-

sions of the switch boxes in Xilinx FPGAs which have
been shown to require a minimum of three routing BIST
configurations [6]. However, it took us four configura-
tions for vertical repeaters and another four configura-
tions for horizontal repeaters. Two examples of these
repeater tests are illustrated in Figure 9a where alternat-
ing up-count/even-parity and down-count/odd-parity
TPGs are used to drive alternating sets of WUTs in or-
der to detect stuck-on faults in some of the PIPs in the
repeater while other PIPs are being tested for stuck-off
faults. As the four repeater BIST configurations are ap-
plied, all PIPs in the repeater cell are tested for stuck-on
and stuck-off faults.

Figure 9. Example repeater BIST configuration
A total of eight configurations are required to test

the cross-point PIPs interconnecting a given set of ex-
press busses. This includes both stuck-off and stuck-on
cross-point PIP faults. An example of the cross-point
PIP BIST configurations is shown in Figure 9b. During
subsequent BIST configurations, the on cross-point PIPs
that are would shift down through the rows until all
cross-point PIPs are tested.

Therefore, a total of 32 BIST configurations are
needed, in addition to the logic BIST configurations, to
completely test the routing resources in the core of the
FPGA, as summarized in Table 3. The STAR size is
given in terms of the size of the PLB array needed to
implement the BIST circuitry and, as a result, the diag-
nostic resolution associated with a failing routing BIST
ORA indication. However, the faults can usually be
located to an area smaller than the STAR size given. For
better diagnostic resolution, additional diagnostic BIST
configurations must be developed and applied in order
to locate a faulty wire segment or PIP [9]. Note that the
routing resources associated with the free RAMs in the
array are tested as a part of the RAM BIST since these
resources are dedicated for access to/from the RAMs.

Table 3. Routing BIST Configurations
Routing Resource # Configs STAR

Multiplexed PLB inputs 8 4×4
Vertical repeater cells 4 1×16

Horizontal repeater cells 4 16×1
Express bus cross-points 16 8×8

a) repeater tests
b) global cross-

point test

=cross-point off =cross-point on
=TPG =repeater =ORA =unused PLB

+
Pass
Fail

ORA

Cnt0

Cnt1

Parity
WUTs

T
P
G

6. SUMMARY AND CONCLUSIONS

We have presented an MGL-based approach for the
automatic generation of 45 total BIST configurations
that completely test the logic, RAM, and interconnect
resources in Atmel AT40K series FPGAs as well as the
FPGA core in AT94K series SoCs. The user simply
specifies the size of the array and/or the target device to
obtain the complete set of BIST configurations for that
device. MGL proved to be reasonably effective in the
development and automatic generation of BIST configu-
rations despite some minor limitations and bugs we en-
countered. Table 4 summarizes the number of BIST
configurations produced by each MGL program along
with the approximate number of non-commented lines
of MGL source code (NCL) in each program.

Table 4. MGL code and BIST Configurations
MGL program NCL # Configs Generated

Logic BIST 1700 10 logic + 4 local routing
120 3 SPRAM tests RAM BIST 140 1 DPRAM test

Local Routing 1000 4 X direct connections
Repeaters 1300 8 (4 vertical + 4 horizontal)

1360 8 Express bus
cross-points 735 8

Total 6,355 46 configurations

These BIST configurations produce very near 100%
fault coverage. In the case of logic BIST, 100% fault
coverage could not be obtained due to minor limitations
of control provided by MGL that limit the fault cover-
age to 98%. However, the download bitstream files for
the logic BIST configurations can be modified to pro-
duce the testing conditions necessary to obtain 100%
fault coverage. RAM BIST fault coverage is 99.9% with
eight undetected faults residing in the clock and address
decoding circuitry; we are currently investigating modi-
fications to the RAM BIST algorithms to detect those
faults. Routing BIST fault coverage is also very near
100%. However, at this point we have only completed
fault simulations on the local routing resources and in
the process of performing fault simulations on the
global routing resources to verify this fault coverage.

REFERENCES

[1] M. Abramovici and C. Stroud, “BIST-Based Test
and Diagnosis of FPGA Logic Blocks,” IEEE
Trans. on VLSI Systems, Vol. 9, No. 1, pp. 159-172,
2001.

[2] C. Stroud, A Designer’s Guide to Built-In Self-Test.
Kluwer Academic Publishers, Boston MA, 2002.

[3] C. Stroud, J. Nall, A. Taylor and L. Charnley, “A
System for Automated Generation of Built-In Self-
Test Configurations for Field Programmable Gate
Arrays,” Proc. Int’l Conf. on Systems Engineering,
pp. 437-443, 2002.

[4] C. Stroud, K. Leach, and T. Slaughter, “BIST for
Xilinx 4000 and Spartan Series FPGAs: A Case
Study”, Proc. IEEE Int’l Test Conf., pp. 1258-1267,
2003.

[5] C. Hamilton, G. Gibson, S. Wijesuriya and C.
Stroud, “Enhanced BIST-Based Diagnosis of
FPGAs via Boundary Scan Access,” Proc. IEEE
VLSI Test Symp., pp. 413-418, 1999.

[6] X. Sun, J. Xu, B. Chan and P. Trouborst, “Novel
Technique for BIST of FPGA Interconnects,” Proc.
IEEE Int’l Test Conf., pp. 795-803, 2000.

[7] D. Fernandes and I. Harris, “Application of Built-In
Self-Test for Interconnect Testing of FPGAs”,
Proc. IEEE Int’l Test Conf., pp. 1248-1257, 2003.

[8] S. Pontarelli, G.C. Cardarilli, A. Malvoni, M. Ot-
tavi, M. Re, and A. Salsano, “System-on-Chip Ori-
ented Fault-Tolerant Sequential Systems Imple-
mentation Methodology”, Proc. IEEE Int’l Symp.
on Defect and Fault Tolerance in VLSI Systems, pp.
455-460, 2001

[9] C. Stroud, J. Nall, M. Lashinsky and M.
Abramovici, “BIST-Based Diagnosis of FPGA In-
terconnect,” Proc. IEEE Int’l Test Conf., pp. 618-
627, 2002.

[10] C. Stroud, S. Konala, P. Chen, and M. Abramovici,
“Built-In Self-Test for Programmable Logic Blocks
in FPGAs,” Proc. IEEE VLSI Test Symp., pp. 387-
392, 1996.

[11] M. Abramovici and C. Stroud, “BIST-Based Delay-
Fault Testing in FPGAs,” J. Electronic Testing:
Theory & Applications., Vol. 19, N0. 5, pp. 549-
558, 2003.

[12] Atmel, Corp., www.atmel.com/products.
[13] __, Integrated Development System AT40K Macro

Library Version 6.0, Atmel Corp., Oct. 1998.
[14] __, Integrated Development System Technical Ref-

erence and Release Notes Version 6.0, Atmel
Corp., Oct. 1998.

[15] Xilinx, Inc., www.xilinx.com/products.
[16] Lattice Semiconductor Corp., www.latticesemi.

com/products.
[17] A. van de Goor and S. Hamdioui, “Fault Models

and Tests for Two Port Memories,” Proc. IEEE
VLSI Test Symp., pp. 401-410, 1998.

[18] S. Donthi and R. Haggard, “A Survey of dynami-
cally reconfigurable FPGA devices,” Proc. South-
eastern Symp on System Theory, pp. 422-426, 2003.

[19] A.van de Goor, G. Gaydadjiev, V. Jarmolik and V.
Mikitjuk, “March LR: A Test for Realistic Linked
Faults,” Proc. IEEE VLSI Test Symp., pp. 272-280,
1996.

[20] A.J. van de Goor, I.B.S. Tlili, and S. Hamdioui,
“Converting March Tests for Bit-Oriented Memo-
ries into Tests for Word-Oriented Memories,” IEEE
Int’l Workshop on Memory Technology Design and
Testing, pp. 46-52, 1998.

