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ABSTRACT: The development and automatic generation 
of Built-In Self-Test (BIST) configurations for Atmel 
AT40K series Field Programmable Gate Arrays 
(FPGAs) are described. These BIST configurations 
completely test the programmable logic and routing 
resources in the core of the FPGA along with the dedi-
cated Random Access Memories (RAMs) dispersed 
within the array. The BIST configurations are generated 
using Atmel’s Macro Generation Language (MGL) for 
any size FPGA. The advantages and limitations of this 
approach are discussed.1 

1. INTRODUCTION 

Field Programmable Gate Arrays (FPGAs) consist 
of a two-dimensional array of Programmable Logic 
Blocks (PLBs) interconnected by a programmable rout-
ing network and surrounded by programmable in-
put/output (I/O) cells. In recent FPGAs, additional dedi-
cated Random Access Memories (RAMs) are provided 
within the array for data storage functions. The system 
function performed by the FPGA is established by the 
contents of the configuration memory such that an 
FPGA can perform a wide variety of system functions 
by rewriting the configuration memory. The PLBs con-
sist of sections of the configuration memory that can be 
used as Look-Up Tables (LUTs) to perform combina-
tional logic functions. In addition, the PLBs contain 
flip-flops to perform sequential logic functions. 

While attractive to designers, the programmability 
of FPGAs poses serious testing problems due to the 
large number of configurations required to test all pos-
sible modes of operation. One solution is to reprogram 
the FPGA with BIST circuitry to allow the FPGA to test 
itself without the need for expensive external test equip-
ment [1]. When completely tested and found to be fault-
free, the FPGA can be safely reprogrammed to perform 
the intended system function(s) prior to normal system 
operation. In the event that a fault is detected by the 
BIST, additional BIST-based diagnostic configurations 
can be downloaded into the FPGA to facilitate identifi-
cation of the faulty resource(s) and reconfiguration of 
the FPGA to avoid the faults during on-line operation 
[1]. BIST for FPGAs can be used at all levels of testing 
(from wafer to system-level testing) without the area 
overhead and performance penalties associated with 
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BIST approaches for Application Specific Integrated 
Circuits (ASICs) [2]. 

One problem with BIST for FPGAs is that while the 
basic BIST architecture is generic, the specific test con-
figurations are not [3]. The BIST configurations for the 
PLB and interconnect resources must be developed for 
each specific FPGA architecture. Once developed, these 
BIST configurations can be applied to all devices of the 
same size and type. Scaling the BIST configurations to 
fit different size FPGAs in the same family is relatively 
straight forward. However, developing BIST configura-
tions for a new family of FPGAs requires development 
of new test configurations specific to that architecture. 
Therefore, the challenge is to develop a mechanism to 
automatically generate the BIST configurations for a 
given FPGA series architecture. Fortunately, Atmel’s 
Macro Generation Language (MGL), provided as part of 
their Integrated Development System (IDS), is a pro-
gramming language specifically for the development of 
regular and parameterized circuits to be implemented in 
their AT40K series FPGA. As a result, MGL has the 
potential for supporting automatic generation of BIST 
configurations for these FPGAs. 

In this paper, we describe development of programs 
in MGL that are capable of automatic generation of all 
BIST configurations needed to test the core of any At-
mel AT40K series FPGA as well as the FPGA core in 
AT94K series System-on-Chips (SoCs). We begin with 
a presentation of background material in Section 2 in-
cluding the architecture and operation of BIST ap-
proaches for FPGAs, an overview of the architecture of 
Atmel FPGAs, and an overview of MGL. We then de-
scribe development of MGL-based generation of BIST 
configurations, including fault coverage and problems 
encountered, for programmable logic, RAMs, and inter-
connect resources in Sections 3, 4 and 5, respectively. 
The paper is summarized in Section 6. 

2. BACKGROUND 

2.1. Overview of FPGA BIST 
In most approaches to BIST of programmable logic 

and interconnect resources in FPGAs, some of the PLBs 
are configured as Test Pattern Generators (TPGs) and 
Output Response Analyzers (ORAs). While both logic 
and routing resources are required to implement an 
FPGA BIST technique, the specific target of the testing 
is either the logic blocks under test (BUTs) or intercon-



nect wires under test (WUTs) [1]-[10]. The TPGs for 
logic BIST are typically Linear Feedback Shift Regis-
ters or counters to generate pseudo-exhaustive test pat-
terns [1] while TPGs for routing BIST typically gener-
ate exhaustive test patterns [9] or walking test patterns 
[7]. Parity check ORAs have been used for routing 
BIST [6]. Due to the replication of the PLBs and their 
associated routing in the FPGA, comparison-based 
ORAs are effective and offer good diagnostic resolution 
for both logic and routing BIST [1][9].  

The most common logic BIST architecture is to ar-
range the BUTs and ORAs in alternating columns (or 
rows) [1]. Multiple, identical TPGs drive alternating 
columns (or rows) of BUTs with identical test patterns 
while the output responses of these identically pro-
grammed BUTs are compared in the neighboring col-
umns (or rows) of ORAs. The BUTs are repeatedly re-
configured in their various modes of operation until the 
BUTs are completely tested. The roles of the PLBs are 
then reversed by flipping the architecture such that the 
PLBs that were previously tested as BUTs become the 
TPGs and ORAs in order to test the PLBs that were 
previously TPGs and ORAs [1]. Given the number of 
test configurations required to completely test a PLB, 
NBUT, the minimum number of test configurations for a 
complete logic BIST is 2NBUT when at least half of the 
PLBs are BUTs during any given test session. The value 
of NBUT is a function of the architecture and functional-
ity of the PLB and is typically on the order of 10 to 15 
for PLBs such as those in the Lattice Semiconductor 
ORCA 2C/2CA [1] and the Xilinx 4000 and Spartan 
series FPGAs [4]. The only prior work in logic BIST for 
Atmel AT40K series FPGAs was for the FPGA core of 
the AT94K series SoC (or Field Programmable System 
Level Integrated Circuit – FPSLIC, in Atmel terminol-
ogy [12]) where the microprocessor core in the SoC was 
used for on-line testing of the LUTs of the PLBs using 
two test configurations per LUT [8]. A total of 2N2 test 
configurations (where N is the number of PLBs in one 
dimension of the array) were required since the PLBs 
were tested one at a time. It should also be noted that 
the PLB was not completely tested in this approach. 

A number of routing BIST architectures have been 
developed including a comparison-based approach [9], a 
parity-based approach [6], and an oscillation-based de-
lay-fault testing approach [11]. In the most commonly 
implemented routing BIST approach, small Self-Test 
AReas (STARs) are constructed with PLBs used to im-
plement TPGs to source identical test patterns (either 
walking [7] or exhaustive [9] patterns) to two sets of 
WUTs that are then compared by the ORA at the other 
end of the WUTs. The FPGA is filled with these STARs 
to facilitate concurrent testing of as many routing re-
sources as possible in order to minimize the total num-
ber of test configurations for complete testing of the 
interconnect network for the various faults that can oc-
cur. These faults include shorts and opens in the wire 
segments, wire segments stuck-at-1 and stuck-at-0, 
stuck-on and stuck-off faults in the various types of 
Programmable Interconnect Points (PIPs) or switches 
that are used to program the interconnect network as 
well as stuck-at faults in the configuration memory bits 
used to program the PIPs [2]. Vertical and horizontal 
STARs test vertical and horizontal interconnect re-
sources, respectively. It should be noted that the STAR-
based technique can be used with the parity-based BIST 
approach in [6]. Since the programmable routing re-
sources typically account for a larger portion of the 
FPGA than the PLBs, the number of test configurations 
is generally larger as well. The total number of test con-
figurations for complete testing is a function of the in-
terconnect network architecture and have ranged from 
approximately 45 for the Lattice ORCA 2C and 2CA 
series FPGAs [9] to over 200 for the Xilinx 4000 and 
Spartan series FPGAs [4]. We are not currently aware of 
any prior work in routing BIST for Atmel FPGAs.  

2.2. Overview of Atmel’s FPGAs and MGL 
The Atmel FPGA consists of a symmetrical array of 

identical cells throughout the architecture, as illustrated 
in Figure 1. Each PLB has two 3-input LUTs, a 
Set/Reset D Flip-Flop (FF), and several multiplexers 
that provide a variety of functionality. For every 4×4 
array of logic cells, there is one 32×4 RAM. The RAM 
can be operated in single port or dual port mode and 
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there is no use of logic resources in any PLB when ac-
cessing the SRAM. Dedicated local routing resources 
allow direct horizontal, vertical, and diagonal PLB-to-
PLB connections without using global routing re-
sources. Five vertical and five horizontal bus planes are 
associated with each PLB, where each plane consists of 
two express lines and one local line that can be accessed 
by any of the four inputs to the PLB or by the output 
from the PLB. Bus repeaters are placed within the 
global routing resources every four cells to prevent sig-
nal degradation for long and/or heavily loaded nets. 

Given the time involved in developing BIST con-
figurations for a given FPGA architecture and the large 
number of BIST configurations required to completely 
test both the logic and routing resources, it is desirable 
to develop a mechanism that facilitates automatic gen-
eration of the BIST configurations for all sizes of 
FPGAs in a given series. This has been done previously 
for Xilinx 4000 and Spartan series FPGAs using Xilinx 
Design Language (XDL) [4] and for Lattice ORCA 2C 
and 2CA series FPGAs using a language similar to XDL 
[3]. These languages are a textual netlist-like description 
of the programming and interconnection of the PLBs for 
a given configuration of the FPGA. Independent pro-
grams were developed in C and Perl to automatically 
generate the XDL description for each BIST configura-
tion based on the array size of the particular FPGA [4]. 
Each XDL file was then converted to a configuration bit 
file through programs provided in the FPGA tool suite. 

MGL, on the other hand, provides users of the 
AT40K FPGAs and AT94K FPGA cores with an inte-
grated method for creating parameterized, user-defined 
circuits to meet desired design specifications. In order to 
configure a PLB, MGL requires the use of either prede-
fined macros (gates, multiplexers, flip-flops, etc.) or 
dynamic macros. Dynamic macros give the most versa-
tility in defining the functionality of a PLB ranging 
from any 2-input to 4-input logic function in various 
combinations of registered or non-registered outputs and 
feedback [13]. The two look-up tables (LUTs) in the 
PLB are programmed through Boolean expressions de-
clared within the dynamic macro instantiation. How-
ever, user control over the PLBs is limited to the dy-
namic macros and no further control is provided by 
MGL. These dynamic macros can be instantiated 
through the available graphical interface in IDS, or 
through the use of MGL. The former must be instanti-
ated each time a design is created whereas the latter is 
easily automated since MGL is similar to a program-
ming language and may be parameterized and used to 
create designs in any of the Atmel AT40K FPGAs and 
AT94K FPGA cores. 

MGL is structured such that basic constructs typical 
to most programming or hardware description lan-

guages, such as VHDL, may be utilized. As in VHDL, 
the language in MGL is strongly typed, meaning that all 
objects must be assigned a specific type [14]. In contrast 
to VHDL, however, MGL is case-sensitive, such that 
function() and Function() are distinct and independent 
[14]. In order to instantiate a design using MGL in a 
particular FPGA array, three components must exist in 
the MGL code: user-defined functions (i.e., BUTs, 
ORAs, TPGs), the target FPGA device (i.e., AT40Kxx), 
and the inputs and outputs to the circuit (i.e., clock in-
put, reset input, pass/fail output) [14]. Pre-processor 
directives, global variables and constants may also be 
defined.  

To illustrate the format of MGL and its similarities 
to programming and hardware description languages, 
the example given in Figure 2 was taken from our logic 
BIST MGL code. This example MGL code instantiates 
a column of ORAs which receive inputs from the out-
puts of the BUTs to the left (denoted BL) and right (BR) 
of the ORA, in addition to clock and reset inputs. To 
begin, the function is declared and a target FPGA device 
is selected, in this case an AT40K40 FPGA in a 208-pin 
package. To parameterize the instantiation of the col-
umn of ORAs, a variable, ARRAY_SIZE, is declared and 
is determined by the built-in MGL sizeof() function 
which returns the size of one dimension of the PLB ar-
ray. Two for loops are next used to create all of the re-
spective I/O ports and then all of the ORA instances 
which are placed in column 2 of the FPGA. The connec-

function ORAs(name : string) : macro 
begin 
fpga := setdevice( "AT40K40-2DQI"); 
ARRAY_SIZE := sizeof(fpga); 
interface ORAsIO of ORAs is 
   inputports("CLK", "RST"); 
   for i in 0 to ARRAY_SIZE loop 
     inputports(“BL”{0}”_”{i}, “BR” ”{0}”_”{i}); 
     outputports("P/F" + i); 
   end loop; 
end interface; 
contents of ORAs is 
for i in 0 to ARRAY_SIZE loop  
instance "ORAcell" + i of ORAcell is 
    location(2,i); 
    connections( 
         "CLK" -> "CLK", 
         "RST" -> "RST", 
         "BL" -> "BL"{1}"_"{i}, 
         "BR" -> "BR"{3}"_"{i}, 
         "P/F" -> "P/F"); 
     placeports("P/F" -> "Y"); 
end instance;  
end loop;  
end contents; 
return(ORAs); 
end;//ORAs function complete 

Figure 2. Example MGL program 



tions statement defines the I/O connections of the re-
spective ORA PLB. 

The focus of this paper is the development of pa-
rameterized MGL programs that will automatically gen-
erate BIST configurations for any size AT40K FPGA or 
AT94K FPGA core. In the following sections, we de-
scribe the use of MGL and the resultant BIST configu-
rations for the logic, RAM, and routing resources. In 
addition, we discuss MGL capabilities and limitations 
observed during this development. 

3. LOGIC BIST 

The logic BIST configurations developed for the 
Atmel AT40K series FPGAs and the FPGA core in the 
Atmel AT94K series SoCs consisted of five test phases, 
each with a different dynamic macro instantiated as the 
BUTs. These BIST configurations are automatically 
generated with parameterized MGL code. With the ad-
justment of a few parameters in the MGL code, the 
BIST configurations can be generated for any desired 
size FPGA or FPGA core. The architecture for the logic 
BIST test sessions are illustrated in Figure 3a and 3b 
with a 5-bit up-counter used for each TPG to drive the 
five inputs to each BUT. The logic BIST configurations 
are oriented along columns due to column-based bank 
clocks and resets for every group of four PLBs in the 
column. For example, in a row-based BIST architecture, 
the reset to the BUTs cannot be tested without resetting 
the ORAs and losing detected fault information. The X 
output of a BUT connects to any of four diagonally ad-
jacent ORAs while the Y output connects any of four 
orthogonally adjacent ORAs. In order to observe both 
outputs of the BUTs, an alternating routing scheme was 
devised (illustrated in Figure 3c and 3d) in which con-
nections between the BUTs and the comparison-based 
ORAs are alternated between each BIST configuration. 

Figure 3. Logic BIST architecture and connections 
Five BUT configurations were chosen from the dy-

namic macros available in MGL that yielded the maxi-
mum fault coverage. Fault simulations were performed 
considering the alternating BUT-to-ORA connection 
scheme shown in Figure 3c and 3d to produce the plot 

in Figure 4 showing both individual and cumulative 
fault coverage through the sequence of the five BUT 
configurations. The cumulative single stuck-at gate-
level fault coverage was 98% for BUTs in the middle of 
the array. For those BUTs along the edges of the FPGA 
array, fault coverages of 97.3% and 97.8% were ob-
tained for the two left-most and right-most columns, 
respectively. The macros used in the five BUT configu-
rations are summarized in Figure 4 and Table 1. Limita-
tions of MGL dynamic macros prevent control of all 
configuration bits in the BUTs such that only certain 
combinations of configuration bits exist within the in-
stantiation of dynamic macros; this limits the maximum 
fault coverage to less than 100% as a result of the in-
visible logic problem described in [1].  
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Table 1. Logic BIST Configurations 
Config PLB Mode of Operation Macro 

1 4-input LUT, rising-edge FF, active-
high reset FGEN1R

2 4-input LUT  FGEN1 

3 4-input LUT, falling-edge FF with 
sequential feedback, active-low set FGEN1RF

4 Multliplier-based LUTs MGEN 

5 Two 3-input LUTs with combina-
tional feedback  FGEN2F

Due to the small size of the PLBs in the AT40K se-
ries FPGA, it is not possible to implement a compari-
son-based ORA with a shift register capability for re-
trieving the results at the end of the BIST sequence. One 
option is to have a 2-PLB ORA implementation, one 
PLB for comparison of four BUT outputs and the other 
PLB for latching mismatches and shifting out results, as 
illustrated in Figure 5a, but this reduces diagnostic reso-
lution. However, since the device can be partially recon-
figured without affecting the values held within the PLB 
flip-flop using the synchronous RAM configuration 
mode [12], a 1-PLB ORA which compares two BUT 

a) Test Session 1 b) Test Session 2 

=TPG 
=BUT 
=ORA 

d) Routing Scheme 2c) Routing Scheme 1 

= X direct 
= Y direct 



outputs and latches mismatches (Figure 5b) can be par-
tially reconfigured as a shift register (Figure 5c) upon 
completion of the BIST sequence to retrieve the ORA 
results. We use this dynamic partial reconfiguration 
approach for creating the shift register while maintain-
ing maximum diagnostic resolution. 

Figure 5. ORA/shift register implementations 

An evaluation of the propagation delay for each of 
the five logic BIST configurations was performed to 
determine the maximum clock frequency for the various 
array sizes in the AT40K series FPGAs. This was done 
by using the Atmel Figaro IDS software to evaluate the 
worst case delays for each BUT configuration and array 
size. The various sizes of the AT40Kxx FPGAs are: 05 
(16×16 PLBs), 10 (24×24 PLBs), 20 (32×32 PLBs), and 
40 (48×48 PLBs). Figure 6 gives the timing analysis 
results in terms of the maximum BIST clock frequency. 
As indicated, the maximum BIST clock frequency for 
the AT40K40 is approximately 27MHz, while the 
AT40K05 device can be operated at a clock frequency 
of greater than 60MHz for all five BIST configurations. 
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Figure 6. Maximum clock frequency for logic BIST 

4. RAM BIST 

The embedded RAMs (referred to as “free RAMs” 
in Atmel terminology) inside the FPGA core are distrib-
uted over the entire array. Each 4×4 array of PLBs share 
a 32×4-bit RAM. All these RAMs except those in the 
rightmost column can be configured as both single-port 

and dual-port RAMs and can operate in either synchro-
nous or asynchronous mode. The dual-port RAMs are 
arranged in such a way that they have a common read 
address with one of their adjacent RAMs and a common 
write address with the other. The dual-port RAMs are 
not true dual-port RAMs in that they have one port 
dedicated for reading and another for writing. Reading 
and writing the dual-ports of the RAM are independent 
of each other and reading the RAM is completely asyn-
chronous. Therefore, complex March algorithms used to 
test true dual-port RAMs, such as described in [17], 
need not be used. The dual-port RAM test algorithm 
used in [4] was modified to test the Atmel free RAMs. 
This algorithm (denoted DPR test) is given in Table 2 in 
terms of the operations performed on each port 
(write:read); ‘n’ denotes no operation on that port. 

Table 2. RAM BIST Configurations and Algorithms 
Mode Config Algorithm 
Sync 

Dual-Port
1) DPR test ⇑⇓(w0:n); ⇓(n:r0); ⇑(w1:⇓r1); 

⇓(w0:⇑r0); 
Sync 

Single-Port
2) March-
LR w/BDS

⇑⇓(w0000); ⇓(r0000; w1111); 
⇑(r1111; w0000; r0000; r0000; 
w1111); ⇑(r1111; w0000); 
⇑(r0000; w1111; r1111; r1111; 
w0000); ⇑(r0000;w0101;w1010; 
r1010); ⇓(r1010; w0101; r0101); 
⇑(r0101; w0011; w1100; r1100); 
⇓(r1100;w0011; r0011);⇑(r0011);

Async 
Single-Port

3) March-Y 
w/o BDS 

⇑⇓(w0); ⇑(r0;w1;r1); 
⇓(r1;w0;r0); ⇑(r0); 

Pattern sensitivity and intra-word coupling faults as-
sociated with bit-oriented memories are tested in the 
single-port RAM mode. This is because all RAMs are 
tested in the single-port mode, including the RAMs 
along the right hand column of the array. The March-LR 
algorithm described in [19] is used to test the RAMs in 
the synchronous single-port mode. The March-LR algo-
rithm is modified as described in [20] to test word-
oriented memories by including background data se-
quences (BDS). The March-LR algorithm used to test 
the single-port RAMs in synchronous mode is given in 
Table 2. The March-Y algorithm without background 
data sequences is used to test the single-port RAMs in 
asynchronous mode and is also given in Table 2 where 
r0/w0 indicates reading or writing all 0s in the word. 

All of the RAMs in the FPGA are tested in parallel 
using the three test configurations summarized in Table 
2. The total fault coverage obtained is 99.9%. The dual-
port RAMs are not tested in asynchronous mode of op-
eration because the port which is dedicated for reading 
is always asynchronous and is tested during synchro-
nous mode. In all three test configurations, a single TPG 
is used to produce the read and write addresses as well 
as the write data for the RAMs. A comparison-based 
ORA similar to the one used for logic BIST is used. In 
the dual-port RAM test, the ORAs compare output data 
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from two adjacent RAMs as illustrated in Figure 7a. In 
the single-port RAM tests, the ORAs compare output 
data from each RAM with expected results generated by 
the TPG as illustrated in Figure 7b. All ORAs are con-
nected in the form of a shift register to retrieve the re-
sults from the ORAs at the completion of the BIST se-
quence. Diagnostic resolution with this approach can 
identify the faulty RAM as well as the faulty data bit 
associated with that RAM.  

Figure 7. RAM BIST architectures 

Unlike logic BIST, VHDL was initially used to im-
plement the RAM BIST including the TPG and ORAs. 
A parameterized VHDL model is developed to test 
RAMs associated with any array size. This approach 
gives a degree of freedom in implementing logic at a 
higher level instead of using the PLBs and dynamic 
macros of MGL as basic elements. As a result, the pa-
rameterized VHDL could be ported to test the RAMs in 
other FPGAs, such as the block RAMs in Xilinx Virtex 
I/II and Spartan II/III series FPGAs [15]. However, this 
VHDL-based approach poses problems during synthesis 
in the Atmel FPGA. Specifically, the VHDL-based ap-
proach requires that the RAMs be interactively placed at 
desired locations so that the faulty RAMs can be identi-
fied directly from diagnostic results. The ORAs must 
also be manually placed to resolve routing contentions 
due to the heavy use of routing resources by the RAM 
BIST. Therefore, the MGL-based approach used for 
logic BIST is better in this aspect. Using MGL, the 
regular structure portion of the RAM BIST logic con-
sisting of the RAMs and the ORAs can be exploited to 
eliminate contention for routing resources and also to 
place the RAMs and ORAs at desired locations for more 
efficient diagnosis based on failing BIST results. 

Benefits of MGL over VHDL were more evident 
when testing the RAM in single-port mode. A tri-state 
buffer is required to read and write data to and from 
RAMs in single-port mode. Synthesis of the VHDL 
model used a single PLB for implementing a tri-state 
buffer and two PLBs for the ORA requiring twelve out 
of sixteen PLBs in every 4×4 array and leaving only 
four PLBs in every array for the TPG. Alternatively, 
MGL was used to place and route the ORA along with 
the tri-state buffer in eight PLBs. The TPG was then 
modeled using VHDL with automatic placement and 
routing of the TPG PLBs performed by the synthesis 
tool. In the single-port RAM BIST, the TPG also gener-
ates the expected data. Therefore, instead of comparing 

data from adjacent RAMs, the ORA compares data from 
a RAM with the expected data from the TPG as shown 
in Figure 7b. Therefore, the use of MGL not only elimi-
nated manual placement of ORAs and RAMs but also 
helped in using both logic and routing resources more 
efficiently. Furthermore, the same MGL program is 
used to generate all single-port RAM BIST algorithms 
with the simple insertion of the TPG VHDL model as-
sociated with the desired test algorithm. 

The March-LR algorithm with background data se-
quences is used the test the RAMs in single-port, syn-
chronous mode of operation and requires 153 PLBs for 
the TPG implementation. The March-Y algorithm 
(without background data sequences) is used for testing 
the single-port RAMs in the asynchronous mode of op-
eration and requires only 18 PLBs for the TPG. The 
smallest AT40K device (AT40K05) has only 16×16 
PLBs and, as a result, cannot fit the March-LR TPG 
when all RAMs are being tested in a single BIST con-
figuration. One alternative is to apply the single-port 
RAM synchronous mode test configuration twice, test-
ing half of the RAMs in each configuration. Another 
alternative is to use a TPG implementing a March-Y 
algorithm with background data sequences, which uses 
only 67 PLBs, to test all RAMs concurrently in single-
port synchronous mode of operation in the smallest At-
mel device. In this March-Y approach, some pattern 
sensitivity and intra-word coupling fault detection capa-
bility is traded off for reduced testing time.  

5. ROUTING BIST 

The size of the ORA that can be implemented in the 
Atmel AT40K PLB is limited to 3-inputs to allow for a 
feedback to latch any incorrect responses to the test pat-
terns applied. As a result, the comparison-based ORA 
used for routing BIST in [4] and [9] can only be con-
structed to compare two wires in an Atmel AT40K PLB 
such that each set of WUTs in the comparison-based 
BIST approach consists of a single wire. Therefore, for 
fine-grain FPGA architectures like the Atmel AT40K 
series FPGA [18], we find that a modified version of the 
parity-based BIST approach originally proposed in [6] 
facilitates concurrent testing of more routing resources 
than the comparison-based routing BIST approach. The 
primary modification is the use of a small counter (also 
more compatible with fine-grain FPGA architectures) 
and using the parity bit as an additional test pattern. 

 Since the PLB can implement only one cell of a 
counter or LFSR, a TPG consists of two PLBs used to 
implement a 2-bit up-counter with an additional PLB to 
generate even parity over the 2-bit count value. Another 
TPG consists of a 2-bit down counter with an odd parity 
generator. In both cases, the generated parity bit is used 
as a third test pattern sent over the set of WUTs since 
between any two bits in the 3-bit test pattern sequence 

=TPG 
=RAM 
=ORA 

a) DPRAM test b) SPRAM test 



there exist at least two vectors with opposite logic val-
ues (0,1) and (1,0). This is necessary for the detection of 
shorts (bridging faults) in the WUTs. Note that stuck-on 
and stuck-off PIPs behave as shorts and opens, respec-
tively, in WUTs and are detected as long as the neces-
sary test conditions are set up on wire segments not un-
der test [9]. The ORA then consists of a 3-input exclu-
sive-OR or exclusive-NOR to check for even or odd 
parity, respectively, on the 2-bit count value plus the 
parity bit depending on the TPG (up-count with even 
parity or down-count with odd parity). Any detected 
errors are latched by the feedback and OR gate of the 
ORA, as illustrated in Figure 8. In most configurations, 
a single TPG drives multiple sets of WUTs and ORAs 
in order to maximize the routing resources under test 
during any given BIST configuration and, therefore, 
helping to minimize the number of routing BIST con-
figurations. 

Figure 8. Routing BIST architecture 
The local routing resources at the inputs of the At-

mel PLB can be considered as multiplexers with up to 
nine inputs (five horizontal/vertical bus connections and 
four direct connections). This requires a minimum of 
nine routing BIST configurations for complete testing. 
The five vertical bus connections to the input multiplex-
ers are completely tested during logic BIST by cycling 
through the five vertical bus TPG-to-BUT connections 
during each of the five logic BIST configurations. The 
five horizontal bus connections can be tested by rotating 
two of the logic BIST configurations by 90 degrees, 
each configuration testing three of the five horizontal 
bus connections. As in the case of logic BIST, two test 
sessions consisting of two test configurations each must 
be applied to test the horizontal bus connections to all 
PLBs in the array for a total of four test configurations. 
The direct Y connections to the PLBs are also com-
pletely tested by these same test configurations along 
with the set of logic BIST configurations. The direct X 
connections must be tested with additional test configu-
rations using the architecture shown in Figure 8 where 
the WUTs zig-zag through the PLB array between the 
TPG and ORA. This basic structure is rotated through 
the four directions for a total of four test configurations. 
As a result, a total eight test configurations are required, 
in addition to the logic BIST configurations, to com-
pletely test the local routing resources. 

In the global routing resources, the vertical and hori-
zontal repeater cells can be considered as miniature ver-

sions of the switch boxes in Xilinx FPGAs which have 
been shown to require a minimum of three routing BIST 
configurations [6]. However, it took us four configura-
tions for vertical repeaters and another four configura-
tions for horizontal repeaters. Two examples of these 
repeater tests are illustrated in Figure 9a where alternat-
ing up-count/even-parity and down-count/odd-parity 
TPGs are used to drive alternating sets of WUTs in or-
der to detect stuck-on faults in some of the PIPs in the 
repeater while other PIPs are being tested for stuck-off 
faults. As the four repeater BIST configurations are ap-
plied, all PIPs in the repeater cell are tested for stuck-on 
and stuck-off faults. 

Figure 9. Example repeater BIST configuration 
A total of eight configurations are required to test 

the cross-point PIPs interconnecting a given set of ex-
press busses. This includes both stuck-off and stuck-on 
cross-point PIP faults. An example of the cross-point 
PIP BIST configurations is shown in Figure 9b. During 
subsequent BIST configurations, the on cross-point PIPs 
that are would shift down through the rows until all 
cross-point PIPs are tested. 

Therefore, a total of 32 BIST configurations are 
needed, in addition to the logic BIST configurations, to 
completely test the routing resources in the core of the 
FPGA, as summarized in Table 3. The STAR size is 
given in terms of the size of the PLB array needed to 
implement the BIST circuitry and, as a result, the diag-
nostic resolution associated with a failing routing BIST 
ORA indication. However, the faults can usually be 
located to an area smaller than the STAR size given. For 
better diagnostic resolution, additional diagnostic BIST 
configurations must be developed and applied in order 
to locate a faulty wire segment or PIP [9]. Note that the 
routing resources associated with the free RAMs in the 
array are tested as a part of the RAM BIST since these 
resources are dedicated for access to/from the RAMs. 

Table 3. Routing BIST Configurations 
Routing Resource # Configs STAR 

Multiplexed PLB inputs 8 4×4 
Vertical repeater cells  4 1×16 

Horizontal repeater cells 4 16×1 
Express bus cross-points 16 8×8 

a) repeater tests
b) global cross-

point test

=cross-point off =cross-point on 
=TPG =repeater =ORA =unused PLB 

+ 
Pass 
Fail 

ORA 

Cnt0 

Cnt1 

Parity 
WUTs 
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P 
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6. SUMMARY AND CONCLUSIONS 

We have presented an MGL-based approach for the 
automatic generation of 45 total BIST configurations 
that completely test the logic, RAM, and interconnect 
resources in Atmel AT40K series FPGAs as well as the 
FPGA core in AT94K series SoCs. The user simply 
specifies the size of the array and/or the target device to 
obtain the complete set of BIST configurations for that 
device. MGL proved to be reasonably effective in the 
development and automatic generation of BIST configu-
rations despite some minor limitations and bugs we en-
countered. Table 4 summarizes the number of BIST 
configurations produced by each MGL program along 
with the approximate number of non-commented lines 
of MGL source code (NCL) in each program. 

Table 4. MGL code and BIST Configurations 
MGL program NCL # Configs Generated 

Logic BIST 1700 10 logic + 4 local routing 
120 3 SPRAM tests RAM BIST 140 1 DPRAM test 

Local Routing 1000 4 X direct connections 
Repeaters 1300 8 (4 vertical + 4 horizontal)

1360 8 Express bus  
cross-points 735 8 

Total 6,355 46 configurations 

These BIST configurations produce very near 100% 
fault coverage. In the case of logic BIST, 100% fault 
coverage could not be obtained due to minor limitations 
of control provided by MGL that limit the fault cover-
age to 98%. However, the download bitstream files for 
the logic BIST configurations can be modified to pro-
duce the testing conditions necessary to obtain 100% 
fault coverage. RAM BIST fault coverage is 99.9% with 
eight undetected faults residing in the clock and address 
decoding circuitry; we are currently investigating modi-
fications to the RAM BIST algorithms to detect those 
faults. Routing BIST fault coverage is also very near 
100%. However, at this point we have only completed 
fault simulations on the local routing resources and in 
the process of performing fault simulations on the 
global routing resources to verify this fault coverage. 
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