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ABSTRACT 

On-chip Built-In Self-Test (BIST) based diagnosis 
of the embedded Field Programmable Gate Array (FPGA) 
core in a generic System-on-Chip (SoC) is presented. In 
this approach, the embedded processor core in the SoC is 
used for reconfiguration of the FPGA core for BIST, initi-
ating the BIST sequence, retrieving the BIST results, and 
for performing diagnosis of faulty programmable logic 
blocks, memory cores, programmable interconnect re-
sources within the FPGA core based on failing BIST re-
sults. These BIST and BIST-based diagnostic procedures 
have been implemented and verified on a commercial 
SoC with fault injection emulation. Diagnostic resolution 
is achieved to the faulty logic or memory block and can 
be used for on-chip reconfiguration to bypass faulty re-
sources for fault-tolerant applications.1 

1. INTRODUCTION 
Built-In Self-Test (BIST) approaches have been de-

veloped for Field Programmable Gate Arrays (FPGAs) 
[1]-[6]. The basic idea is to reprogram the FPGA logic 
and routing resources with BIST circuitry to allow the 
FPGA to test itself without the need for expensive, exter-
nal test equipment or on-chip dedicated circuitry for 
BIST. Since FPGA cores have been embedded in System-
on-Chip (SoC) architectures, these BIST approaches can 
be applied to embedded FPGA cores to reduce the testing 
cost associated with SoCs [7]. As proposed in [7], once 
tested and diagnosed, the fault-free portion of the FPGA 
core can then be used to test and diagnose other cores in 
the SoC. When applied to a generic, commercial SoC, 
however, it was found that the limited interfaces and ac-
cess between the FPGA core and the remaining cores pre-
vented BIST of those cores using the FPGA core as the 
primary test resource [6]. Yet, some SoC architectures 
provide features that offer unique opportunities for SoC 
testing. For example, the ability of the embedded proces-
sor core to write the FPGA configuration memory. 

The ability for an embedded processor to reconfig-
ure the FPGA core facilitates reconfiguration of the 
FPGA core for BIST without the need for the time-
consuming downloads of BIST configurations needed to 
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test the FPGA core [6]. Furthermore, the embedded proc-
essor should also be capable of executing the BIST se-
quence, retrieving the BIST results, and performing diag-
nostic procedures based on those BIST results for the 
identification of fault resources in the FPGA core, includ-
ing programmable logic and memory blocks as well as 
programmable interconnect resources. Once identified, 
the faulty resources could be bypassed for fault-tolerant 
applications. Collectively, these features provide for on-
chip test, diagnosis and repair. 

In this paper, we describe the development of on-
chip BIST and diagnosis by the embedded processor of 
the FPGA core in the Atmel AT94K series SoC. We be-
gin with an overview of the AT94K series SoC architec-
ture in Section 2 and an overview of the BIST approach 
used to test the FPGA core as well as static Random Ac-
cess Memory (RAM) cores distributed throughout the 
FPGA core in Section 3. This is followed by a detailed 
discussion of the diagnostic procedures used to identify 
faulty FPGA core resources in Section 4. Experimental 
results from our implementation and verification of the 
approach in actual SoCs are presented in Section 5 and we 
conclude in Section 6. 

2. OVERVIEW OF AT94K SERIES SOC 

The Atmel AT94K series SoC architecture, illus-
trated in Figure 1, consists of three major components: 1) 
an FPGA core, 2) three types of RAM cores, and 3) an 8-
bit Advanced Virtual RISC (AVR) processor core [8]. 
The processor core includes a variety of peripheral units 
including 16-bit timer/counters and Universal Asynchro-
nous Receiver-Transmitters (UARTs). The three types of 
RAM cores include: 1) a large number of small 128-bit 
RAMs dispersed throughout the FPGA core, 2) a 20-
Kbyte to 32-Kbyte processor Program Memory, and 3) a 
4-Kbyte to 16-Kbyte dual-port Data RAM shared between 
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Figure 1.  AT94K Series SoC Architecture 
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the FPGA and processor cores. The small RAM cores 
(referred to as free RAMs in Atmel terminology) are 
distributed evenly through the FPGA core with one RAM 
for every 4×4 array of programmable logic blocks (PLBs) 
[8]. Each RAM is a 32×4-bit memory that can operate as 
synchronous or asynchronous, single-port or dual-port 
RAM. The dual-port RAM mode has separate write and 
read address and data ports while the single-port RAM 
mode has a single address bus with a bi-directional data 
bus. These RAMs will be tested and diagnosed along with 
the rest of the FPGA core. 

The remainder of the FPGA core consists of an N×N 
array of programmable logic blocks (PLBs), where N=48 
for the largest AT94K device. Each PLB contains two 3-
input look-up tables (LUTs), a set/reset D flip-flop, and 
additional multiplexers/gates illustrated in Figure 2 [8]. 
Local programmable routing resources connect the Y and 
X outputs of each PLB to the inputs of direct and diagonal 
adjacent PLBs, respectively (Figure 3a). Global routing 
resources consist of five vertical and five horizontal rout-
ing busses associated with each PLB (Figure 3b). The W, 
X, Y, and Z inputs as well as the L output of the PLB can 
connect to the global routing resources. In addition to the 
global routing resources, the X and Y inputs to the PLB 
(Figure 2) can also connect to any of their respective four 
direct local routing resources. Programmable Interconnect 
Points (PIPs) are located at all intersections of the vertical 
and horizontal global routing resources. For every 4×4 
array of PLBs, buffered repeaters in the five global rout-
ing busses prevent signal degradation in lengthy or heav-
ily loaded nets. The repeaters also provide connections 
between the wire segments of each global routing bus. 

The embedded 8-bit AVR processor core can write 
(but not read) the FPGA core configuration memory such 
that the FPGA can be dynamically reconfigured (fully or 
partially) by the processor core during normal system 
operation. This configuration memory access is via a 24-
bit address bus and 8-bit data bus. The address bus is par-
titioned into three 8-bit components (called FPGAX, 
FPGAY, and FPGAZ) that specify the address of the tar-
get configuration memory byte of the FPGA to be recon-
figured. The FPGA is PLB addressable where the FPGAX 
and FPGAY address values correspond to the horizontal 
and vertical PLB location to be reconfigured. The FPGAZ 
address corresponds to specific logic and/or routing re-
sources within the specified PLB. 

3. BUILT-IN SELF-TEST 
The BIST approach for the embedded FPGA core of 

the AT94K series SoC is described in [6]. The basic idea 
is to program some of the PLBs as Test Pattern Genera-
tors (TPGs) and Output Response Analyzers (ORAs) to 
test the remaining programmable logic, RAM, and routing 
resources. In logic BIST, a 5-bit binary up-counter is used 
for each TPG while comparison-based ORAs are used for 
their effective fault detection and good diagnostic resolu-
tion [1]. The test patterns are routed from the TPGs to the 
PLBs under test (BUTs) via global routing resources 
while the BUT-to-ORA connections are made using local 
routing resources. The BIST architecture, shown in Figure 
4 is column-based due to bank clocking and set/reset in 
the array of PLBs. 

Partial reconfiguration of the FPGA core by the em-
bedded processor is used to reconfigure the BUTs in their 
various modes of operation. A total of four BIST configu-
rations are required to completely test the BUTs [6]. Since 
the contents of the PLB flip-flop cannot be read by the 
processor core, dynamic partial reconfiguration by the 
processor core is used to transform the ORAs into a shift 
register to retrieve the BIST results at the end of each set 
of four BIST configurations, referred test session. The 
logic BIST architecture is then flipped about the vertical 
axis to test those PLBs not tested during the first test ses-
sion. As a result, all PLBs are tested in two test sessions. 
However, the local routing architecture of the FPGA core 
and the PLB architecture allow only a single X output and 
a single Y output from adjacent BUTs to be observed by a 
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given ORA. Therefore, an alternating routing scheme was 
devised which allows complete observability of the out-
puts of the BUTs [6]. In the original logic BIST imple-
mentation described in [6], the two test sessions shown in 
Figure 4 were rotated by 90°, for a total of 16 BIST con-
figurations, to overcome low fault coverage along the 
edges of the array. However, when the processor core is 
used for dynamic partial reconfiguration of the FPGA 
core for BIST, a more efficient procedure is to execute 
each of the test sessions shown in Figure 4 twice, once for 
each of the two routing schemes. In this improved 
method, the BIST results are retrieved from the ORAs at 
the end of each test session for a given routing scheme, 
while in the original approach, BIST results had to be 
retrieved at the end of each BIST configuration. 

The small 128-bit RAM cores dispersed throughout 
the FPGA core and located in every 4×4 array of PLBs 
have all inputs and outputs accessible by the PLBs and 
routing resources of the FPGA core. Therefore, these 
RAMs can be tested by the FPGA core with PLBs config-
ured to function as TPGs and ORAs [6]. However, we 
found that a more efficient method for partial reconfigura-
tion of the FPGA core by the embedded processor is to 
implement the TPG functionality as a program executed 
by the processor core. This minimizes the number of 
unique reconfigurations of PLBs in the FPGA core by the 
processor core and, as a result, the size and runtime of the 
program to be executed by the processor core for BIST of 
the RAMs in the FPGA core. 

The RAM BIST architectures used are illustrated in 
Figure 5. A total of three RAM BIST configurations are 
required to completely test these RAMs and all of the 
RAMs are tested in parallel. The RAMs are tested in their 
synchronous dual-port mode using a test algorithm similar 
to the dual-port RAM test described in [5]. The March-LR 
algorithm [9] is used to test the RAMs in their synchro-
nous single-port mode and the March Y algorithm, as 
described in [10], is used to test the asynchronous single-
port mode. Background data sequences are used with the 
March-LR algorithm to detect neighborhood pattern sen-
sitive and intra-word coupling faults [11]. For the dual-
port RAM, the BIST architecture (Figure 5b) is similar to 
that of logic BIST where the outputs of neighboring 
RAMs are compared by a set of ORAs. In the single-port 
RAM modes, however, the AVR processor core can eas-

ily generate the expected results as part of its TPG func-
tionality. These expected results are then compared in the 
ORA with the outputs of the RAM under test (Figure 5a). 

4. BIST-BASED DIAGNOSIS  
Two diagnostic procedures for RAM BIST were de-

veloped as a result of the two different BIST architec-
tures. In the single-port RAM BIST architecture (Figure 
5a), the TPG function performed by the processor core 
also produces the expected read data results along with 
the test patterns sent to the RAMs. The expected read data 
results are sent to the ORAs and are compared to the ac-
tual read data from each RAM under test with any mis-
matches encountered latched in the ORA until retrieval of 
the BIST results at the end of each BIST sequence. The 
ORAs incorporate a shift register mode of operation to 
facilitate shifting the BIST results from each ORA 
through the shift register to the processor core of the SoC. 
Each ORA corresponds to a single bit of the 4-bit words 
of the RAMs. The position of the ORA in the PLB array, 
and the corresponding RAM with which it is associated, is 
determined by the ORA’s position in the shift register. As 
a result of the ORA comparison of the RAM under test 
outputs with the expected read results produced by the 
TPG, the diagnostic procedure for the single-port RAM 
modes of operation is straight forward. The diagnostic 
procedure looks for ORA failure indications (logic 1s) 
and translates the positions based on the shift register or-
der to identify not only which RAMs are faulty but also 
which bits in a given RAM are faulty. A faulty ORA can 
mimic a fault in its corresponding RAM, but since the 
PLBs used to construct the ORAs are tested and diag-
nosed during BIST of the PLBs, the faulty ORA can be 
identified. 

The diagnostic procedure for the dual-port RAM 
mode of operation is more complicated since the outputs 
of two RAMs are compared to detect mismatches that 
result from faults in one or both of the RAMs. It is possi-
ble that equivalent faults in two RAMs being compared 
by the same ORA will go undetected. However, RAMs in 
the middle of the FPGA are being observed by two sets of 
ORAs and being compared to a different RAM in each set 
of ORAs such that the few combinations of faulty RAMs 
that can go undetected by the BIST approach is highly 
improbable; for example, all RAMs in a row of the FPGA 
would have to have equivalent faults to go undetected. 
The diagnostic procedure is based on the Multiple Faulty 
Cell Locator (MULTICELLO) algorithm originally devel-
oped for diagnosing faulty PLBs in FPGAs [1]. The pro-
cedure assumes a column (or row) based BIST architec-
ture where columns (or rows) of BUTs (or RAMs in this 
case) are observed by ORAs in adjacent columns. The 
procedure also assumes there are at most two consecutive 
BUTs (or RAMs) with equivalent faults. The steps of the 
diagnostic procedure, as applied to RAMs with an exam-
ple of a 7×7 array of dual-port RAMs, are as follows: Figure 5.  RAM BIST Architectures 
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Step 1. Record the ORA results and initialize the 
faulty/fault-free status of all RAMs under test as unknown, 
indicated by an empty entry in the table. This is illustrated 
in the Step 1 example below where a 7×7 array of RAM 
cores is used. The columns of RAMs are denoted as R1 to 
R7 with the ORAs denoted as Oij where i and j are the 
RAM columns to the left and right of the ORA, respec-
tively. A ‘1’ in an ORA column entry indicates that a fail-
ure was observed by at least one of the four ORAs associ-
ated with each output of the 4-bit word RAM for that row. 
A ‘0’ indicates that no failure was observed by the ORA. 

Step 1 Example 
row R1 O12 R2 O23 R3 O34 R4 O45 R5 O56 R6 O67 R7

1  0  0  0  1  1  0  
2  0  0  1  1  0  0  
3  1  1  0  0  1  1  
4  0  0  0  0  0  0  
5  0  0  0  1  1  1  
6  1  0  0  0  0  0  
7  0  0  1  0  0  0  

Step 2. In each row, for every two consecutive ORAs 
with 0s, enter a 0 for the RAM under test between them to 
indicate that the RAM is fault-free. This is illustrated in 
the Step 2 example below where new entries are marked 
in bold while entries from the previous step are shown in 
non-bold text. At this point in the example, we have de-
termined that 19 of the 49 RAMs are fault-free. 

Step 2 Example 
row R1 O12 R2 O23 R3 O34 R4 O45 R5 O56 R6 O67 R7

1  0 0 0 0 0  1  1  0  
2  0 0 0  1  1  0 0 0  
3  1  1  0 0 0  1  1  
4  0 0 0 0 0 0 0 0 0 0 0  
5  0 0 0 0 0  1  1  1  
6  1  0 0 0 0 0 0 0 0 0  
7  0 0 0  1  0 0 0 0 0  

Step 3. In each row, for every two adjacent 0s followed 
by an unknown RAM, enter a 0 in the empty cell to indi-
cate that the RAM is fault-free. This is illustrated in the 
Step 3 example below where new entries are shown in 
bold. At this point in the example, we have determined 
that 37 of the 49 RAMs are fault-free. 

Step 3 Example 
row R1 O12 R2 O23 R3 O34 R4 O45 R5 O56 R6 O67 R7

1 0 0 0 0 0 0 0 1  1  0  
2 0 0 0 0 0 1  1 0 0 0 0 0 
3  1  1 0 0 0 0 0 1  1  
4 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 1  1  1  
6  1 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 1 0 0 0 0 0 0 0 

Step 4. In each row, for every adjacent 0 and 1 followed 
by an unknown RAM, enter a 1 in the empty cell to indi-
cate that the RAM is faulty. This is illustrated in the Step 
4 example where new entries are shown in bold. At this 
point we have determined that 6 of the 49 RAMs are 
faulty and 37 are fault-free. 

Step 4 Example 
row R1 O12 R2 O23 R3 O34 R4 O45 R5 O56 R6 O67 R7

1 0 0 0 0 0 0 0 1 1 1  0  
2 0 0 0 0 0 1 1 1 0 0 0 0 0 
3  1 1 1 0 0 0 0 0 1 1 1  
4 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 1 1 1  1  
6 1 1 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 1 0 0 0 0 0 0 0 

Step 5. Consistency check: If an ORA indicates a failure 
but the RAMs on both sides of the ORA are determined to 
be fault-free, then there is a fault either in the ORA or in 
the routing resources between one of the RAMs and the 
ORA. In the Step 4 example above, there is an ORA in-
consistency in row 7 of the array indicating a fault in the 
ORA (or its associated routing) located between RAM 
columns 3 and 4. 

Step 6. If all RAMs have been marked as faulty or fault-
free then a unique diagnosis has been obtained; other-
wise, any RAM that remains marked as unknown may be 
faulty. In the Step 4 example above, we see that the re-
maining 6 of the 49 RAMs are unknown in terms of their 
faulty/fault-free status. In row 1, the RAMs in columns 6 
and 7 could fault-free or they could have equivalent 
faults. In row 3, the RAMs in columns 1 and 7 could be 
faulty or fault-free. In row 5, one (or both) of the two 
RAMs in column 6 or 7 is faulty, we just don’t know 
which one. 

As can be seen in the Step 4 example, the RAMs 
with unknown status are located near the edges of the 
array where diagnostic resolution is lower due to the 
RAMs along the edge being observed by only one ORA. 
These ambiguities in the diagnosis can be removed by 
rotating the RAM BIST architecture by 90° where rows of 
ORAs are comparing rows of RAMs, such that the sets of 
RAMs being compared are orthogonal, and reapplying the 
diagnostic procedure to the new BIST results. This im-
proves diagnostic resolution at the cost of doubling the 
testing time; however, a unique diagnosis can be obtained 
for almost any combination of faulty RAMs. It should 
also be noted that the examples shown here assume a sin-
gle ORA for the complete 4-bit word RAM. In reality, the 
diagnostic algorithm is applied to the four ORAs associ-
ated with the 4-bit word RAMs such that it is more likely 
that unique diagnosis will be obtained without the need 
for rotation since any known faulty bit in a RAM would 
indicate that the RAM is faulty.  In addition, diagnostic 
results from the single-port RAM BIST can be used to 
remove ambiguities in some cases. 

The diagnostic procedure for the PLBs in the FPGA 
core is complicated by the routing scheme used to observe 
both X and Y outputs of the BUTs by the ORAs. The 
MULTICELLO diagnostic procedure, as described in [1], 
only works on rows or columns of alternating BUTs and 
ORAs, and as a result, cannot be directly applied to the 
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“zigzag” pattern of the BUT-to-ORA connections across 
the rows, as shown in Figure 4 and, more specifically, by 
the dotted and dashed lines in Figure 6a. This zigzag con-
nection is required as a result of the local routing architec-
ture of the FPGA core in conjunction with the PLB archi-
tecture allowing only a single X output and a single Y 
output from adjacent BUTs to be observed by a given 
ORA. One solution is to translate the positions of the 
BUTs and ORAs with respect to the BIST results such 
that the translated BUTs and ORAs lie in the same row 
(as shown in Figure 6b), apply the MULTICELLO diagnos-
tic procedure, and then translate the BUTs and ORAs 
back to their true position for identification of the faulty 
and fault-free PLBs in the FPGA core. This translation is 
relatively straight forward, particularly when pairs of 
rows of PLBs are grouped together to form the zigzag 
connection pattern as illustrated in Figures 4 and 6a. Fur-
thermore, this allows the same basic diagnostic program 
used in the processor core for the dual-port RAM diagno-
sis to be used for faulty PLB diagnosis as long as the ap-
propriate BUT and ORA positions are translated before 
Step 1 and again after Step 5 of the diagnostic procedure 
given above. As in the case of RAM BIST, potentially 
faulty PLBs determined as unknown by the diagnostic 
procedure during logic BIST can be determined to be 
faulty or fault-free in most cases by rotating the logic 
BIST architecture illustrated in Figure 4 by 90° and ap-
plying the diagnostic procedure to the new BIST results. 

5. EXPERIMENTAL RESULTS 
The diagnostic algorithms described above have 

been implemented and verified in compiled C programs 
that have been downloaded and executed in the embedded 
processor core of the Atmel AT94K series SoC. The pro-
grams reconfigure and execute BIST, and retrieve the 
results of each BIST sequence. At the conclusion of each 
BIST sequence, the processor core applies the appropriate 
diagnostic procedure for that particular BIST architecture 
(logic or RAM) to the BIST results that have been re-
trieved and stored in the Data RAM of the SoC. 

Upon completion of the diagnostic procedure, the 
processor core reports the diagnostic results to a higher 
level controlling processor (a PC in our environment). 
Results fall into any one of three possible categories: 1) 
faulty, 2) unknown, or 3) ORA inconsistency. In all three 
cases, the row and column number of each faulty or sus-
pected faulty (unknown) resource is reported to facilitate 
reconfiguration around the faulty resources for fault toler-
ant applications. In the first two cases for RAM BIST 
architectures, the faulty bit or bits are also reported. If the 
faulty bits are not being used by the current system appli-

cation, then the system configuration can be loaded into 
the FPGA without any reconfiguration to avoid the 
fault(s). On the other hand, if the bits of the RAM that are 
being used are determined to be faulty, reconfiguration of 
the interconnection to and from the RAM can be applied 
to allow the system function to avoid the faulty bit(s). If 
the system application uses all bits of a RAM that has 
been determined to be faulty, then reconfiguration to a 
fault-free RAM site is required. 

The on-chip diagnostic procedure for RAMs re-
quires a total of 1.1 Kbytes of Program Memory inde-
pendent of the array size as shown in Table 1. Only about 
one-third of the total code is used to implement the 
MULTICELLO algorithm, which is also used for diagnosing 
faulty PLBs during logic BIST. The rest of the code is 
used for translating the diagnostic results to the row and 
column coordinates of the faulty resources and for report-
ing and transferring the diagnostic results to the control-
ling processor. Table 1 gives the worst-case processor 
execution clock cycles for running diagnostics and inter-
preting the obtained results. The amount of BIST results 
information to be processed by the diagnostics varies with 
the size of the array and, as a result, the Data RAM mem-
ory required also varies, as indicated in Table 1. When 
implementing diagnostics for logic BIST, the pre- and 
post-processing performed before and after MULTICELLO, 
to account for the zigzag BUT-to-ORA connections, re-
quires an additional 200 bytes of Program Memory. The 
larger array of PLBs (compared to the array of RAMs) to 
be diagnosed also requires additional Data RAM storage 
and longer execution time. Therefore, the logic BIST di-
agnosis determines the maximum Program Memory and 
Data RAM storage requirements since the same diagnos-
tic program is used for both RAMs and PLBs. 

Table 1. Implementation of Diagnostics 

Logic 
Resource

Array 
Size 

Execution 
Clock 
Cycles 

Program 
Memory 
(bytes) 

Data 
Memory
(bytes) 

6×6 2,400 1130 20 RAMs 12×12 9,700 1130 73 
24×24 32,000 1330 180 PLBs 48×48 110,000 1330 720 

The logic BIST described in [6] relied on external 
reconfiguration of the FPGA core for BIST as well as 
external control for execution of the BIST sequence and 
retrieval of the BIST results. The more efficient approach 
of dynamic partial reconfiguration of the FPGA core by 
the embedded processor core is illustrated in Table 2 in 
terms of the number of processor execution clock cycles 
and Program Memory size required for reconfiguration of 
BIST, execution of the BIST sequence, and retrieval of 
the BIST results for diagnosis in the processor core. 

As shown in Table 2, using the processor core to re-
configure and control logic BIST produces a 33.7% re-
duction in the average number execution clock cycles per 

a) before translation b) after translation
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Figure 6.  Logic BIST BUT-to-ORA Connections 
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test configuration and a 47% reduction in Program Mem-
ory storage requirements. This is due in part to the fact 
that ORA results can be retrieved after each group of four 
test configurations without lost of fault detection informa-
tion instead of after every test configuration as is the case 
in the externally controlled logic BIST approach. Another 
factor is that the externally controlled logic BIST ap-
proach in [6] required running four test sessions (west, 
east, south, and north) for complete testing while the 
processor core controlled logic BIST approach only re-
quires running two test sessions (west and east), twice 
each. Thus, the processor core controlled logic BIST re-
quires less reconfiguration clock cycles to completely test 
the PLBs in the FPGA core. 

Table 2. Logic BIST Reconfiguration Comparison 

Compared Features External 
Control [6] 

Processor
Control 

Number of Test Configurations 16 16 
Program Memory Size (bytes) 6,372 3,380 

Execution Clock Cycles 1,483,644 998,560 
Average Cycles per Test Config. 92,728 62,410 

The total resources required for on-chip BIST and 
diagnosis of the PLB and RAM resources of the embed-
ded FPGA core are summarized in Table 3. The programs 
for all three functions easily fit into the 32 Kbyte Program 
Memory of the AT94K10 and AT94K40 while the Data 
RAM memory requirements use only a small portion of 
the total 16 Kbytes in available in these SoCs. As a result, 
the BIST and diagnostic programs can be stored on-chip 
for on-demand test and diagnosis of the logic and RAM 
resources in the embedded FPGA core. These programs 
have been downloaded and verified on actual AT94K10 
devices (with a 24×24 array of PLBs and a 6×6 array of 
RAMs) as well as on AT94K40 devices (with a 48×48 
array of PLBs and a 12×12 array of RAMs). 

Table 3. BIST and Diagnostics Summary 

Testing 
Function 

Execution 
Clock 
Cycles 

Program 
Memory 
(bytes) 

Data 
Memory
(bytes) 

RAM BIST 398,100 1,860 72 
Logic BIST 998,560 3,380 138 
Diagnostics 110,000 1,330 720 

Total 1,506,660 6,570 930 

6. CONCLUSIONS 
We have described the next step in the evolution of 

built-in self-test, self-diagnosis, and self-repair of embed-
ded FPGA cores in SoC implementations. In this case, we 
have moved on-chip, via the embedded processor core, 
the reconfiguration of the FPGA core for BIST, the con-
trol of the execution of the BIST sequence, the retrieval of 
the BIST results, and more importantly, the on-chip diag-
nosis of the FPGA core based on the failing BIST results. 
Furthermore, the BIST and diagnostic programs can be 

efficiently implemented in the program and data memo-
ries associated with the processor core, as demonstrated 
by our experimental results. As a result, all testing and 
diagnosis can be performed on-chip and on-demand, as 
needed by the mission of the system application. The next 
step in the evolutionary process is the integration of on-
chip algorithms to reconfigure the system function in-
tended for implementation in the embedded FPGA core to 
avoid the faulty resources identified by the diagnostic 
procedure for fault tolerant applications and operation. 
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