

ON-CHIP BIST-BASED DIAGNOSIS OF EMBEDDED PROGRAMMABLE LOGIC CORES
IN SYSTEM-ON-CHIP DEVICES

Charles Stroud, Srinivas Garimella, and John Sunwoo
Department of Electrical and Computer Engineering

Auburn University
Auburn, Alabama 36849-5201, USA

emails: strouce/garimsm/sunwojo@auburn.edu

ABSTRACT

On-chip Built-In Self-Test (BIST) based diagnosis
of the embedded Field Programmable Gate Array (FPGA)
core in a generic System-on-Chip (SoC) is presented. In
this approach, the embedded processor core in the SoC is
used for reconfiguration of the FPGA core for BIST, initi-
ating the BIST sequence, retrieving the BIST results, and
for performing diagnosis of faulty programmable logic
blocks, memory cores, programmable interconnect re-
sources within the FPGA core based on failing BIST re-
sults. These BIST and BIST-based diagnostic procedures
have been implemented and verified on a commercial
SoC with fault injection emulation. Diagnostic resolution
is achieved to the faulty logic or memory block and can
be used for on-chip reconfiguration to bypass faulty re-
sources for fault-tolerant applications.1

1. INTRODUCTION
Built-In Self-Test (BIST) approaches have been de-

veloped for Field Programmable Gate Arrays (FPGAs)
[1]-[6]. The basic idea is to reprogram the FPGA logic
and routing resources with BIST circuitry to allow the
FPGA to test itself without the need for expensive, exter-
nal test equipment or on-chip dedicated circuitry for
BIST. Since FPGA cores have been embedded in System-
on-Chip (SoC) architectures, these BIST approaches can
be applied to embedded FPGA cores to reduce the testing
cost associated with SoCs [7]. As proposed in [7], once
tested and diagnosed, the fault-free portion of the FPGA
core can then be used to test and diagnose other cores in
the SoC. When applied to a generic, commercial SoC,
however, it was found that the limited interfaces and ac-
cess between the FPGA core and the remaining cores pre-
vented BIST of those cores using the FPGA core as the
primary test resource [6]. Yet, some SoC architectures
provide features that offer unique opportunities for SoC
testing. For example, the ability of the embedded proces-
sor core to write the FPGA configuration memory.

The ability for an embedded processor to reconfig-
ure the FPGA core facilitates reconfiguration of the
FPGA core for BIST without the need for the time-
consuming downloads of BIST configurations needed to

1 This work was sponsored by the Dept. of the Army, SMDC,

under grant W9113M-04-1-0002 and by the National Security
Agency under contract H98230-04-C-1177.

test the FPGA core [6]. Furthermore, the embedded proc-
essor should also be capable of executing the BIST se-
quence, retrieving the BIST results, and performing diag-
nostic procedures based on those BIST results for the
identification of fault resources in the FPGA core, includ-
ing programmable logic and memory blocks as well as
programmable interconnect resources. Once identified,
the faulty resources could be bypassed for fault-tolerant
applications. Collectively, these features provide for on-
chip test, diagnosis and repair.

In this paper, we describe the development of on-
chip BIST and diagnosis by the embedded processor of
the FPGA core in the Atmel AT94K series SoC. We be-
gin with an overview of the AT94K series SoC architec-
ture in Section 2 and an overview of the BIST approach
used to test the FPGA core as well as static Random Ac-
cess Memory (RAM) cores distributed throughout the
FPGA core in Section 3. This is followed by a detailed
discussion of the diagnostic procedures used to identify
faulty FPGA core resources in Section 4. Experimental
results from our implementation and verification of the
approach in actual SoCs are presented in Section 5 and we
conclude in Section 6.

2. OVERVIEW OF AT94K SERIES SOC

The Atmel AT94K series SoC architecture, illus-
trated in Figure 1, consists of three major components: 1)
an FPGA core, 2) three types of RAM cores, and 3) an 8-
bit Advanced Virtual RISC (AVR) processor core [8].
The processor core includes a variety of peripheral units
including 16-bit timer/counters and Universal Asynchro-
nous Receiver-Transmitters (UARTs). The three types of
RAM cores include: 1) a large number of small 128-bit
RAMs dispersed throughout the FPGA core, 2) a 20-
Kbyte to 32-Kbyte processor Program Memory, and 3) a
4-Kbyte to 16-Kbyte dual-port Data RAM shared between

=RAM=PLB

Figure 1. AT94K Series SoC Architecture

AVR
Processor

FPGA

Data
RAM

Program
Memory

Peripheral
Units

Prepress
308

strouce
Note
from Proc. ISCA International Conf. on Computers and Their Applications, pp. 308-313, 2005

the FPGA and processor cores. The small RAM cores
(referred to as free RAMs in Atmel terminology) are
distributed evenly through the FPGA core with one RAM
for every 4×4 array of programmable logic blocks (PLBs)
[8]. Each RAM is a 32×4-bit memory that can operate as
synchronous or asynchronous, single-port or dual-port
RAM. The dual-port RAM mode has separate write and
read address and data ports while the single-port RAM
mode has a single address bus with a bi-directional data
bus. These RAMs will be tested and diagnosed along with
the rest of the FPGA core.

The remainder of the FPGA core consists of an N×N
array of programmable logic blocks (PLBs), where N=48
for the largest AT94K device. Each PLB contains two 3-
input look-up tables (LUTs), a set/reset D flip-flop, and
additional multiplexers/gates illustrated in Figure 2 [8].
Local programmable routing resources connect the Y and
X outputs of each PLB to the inputs of direct and diagonal
adjacent PLBs, respectively (Figure 3a). Global routing
resources consist of five vertical and five horizontal rout-
ing busses associated with each PLB (Figure 3b). The W,
X, Y, and Z inputs as well as the L output of the PLB can
connect to the global routing resources. In addition to the
global routing resources, the X and Y inputs to the PLB
(Figure 2) can also connect to any of their respective four
direct local routing resources. Programmable Interconnect
Points (PIPs) are located at all intersections of the vertical
and horizontal global routing resources. For every 4×4
array of PLBs, buffered repeaters in the five global rout-
ing busses prevent signal degradation in lengthy or heav-
ily loaded nets. The repeaters also provide connections
between the wire segments of each global routing bus.

The embedded 8-bit AVR processor core can write
(but not read) the FPGA core configuration memory such
that the FPGA can be dynamically reconfigured (fully or
partially) by the processor core during normal system
operation. This configuration memory access is via a 24-
bit address bus and 8-bit data bus. The address bus is par-
titioned into three 8-bit components (called FPGAX,
FPGAY, and FPGAZ) that specify the address of the tar-
get configuration memory byte of the FPGA to be recon-
figured. The FPGA is PLB addressable where the FPGAX
and FPGAY address values correspond to the horizontal
and vertical PLB location to be reconfigured. The FPGAZ
address corresponds to specific logic and/or routing re-
sources within the specified PLB.

3. BUILT-IN SELF-TEST
The BIST approach for the embedded FPGA core of

the AT94K series SoC is described in [6]. The basic idea
is to program some of the PLBs as Test Pattern Genera-
tors (TPGs) and Output Response Analyzers (ORAs) to
test the remaining programmable logic, RAM, and routing
resources. In logic BIST, a 5-bit binary up-counter is used
for each TPG while comparison-based ORAs are used for
their effective fault detection and good diagnostic resolu-
tion [1]. The test patterns are routed from the TPGs to the
PLBs under test (BUTs) via global routing resources
while the BUT-to-ORA connections are made using local
routing resources. The BIST architecture, shown in Figure
4 is column-based due to bank clocking and set/reset in
the array of PLBs.

Partial reconfiguration of the FPGA core by the em-
bedded processor is used to reconfigure the BUTs in their
various modes of operation. A total of four BIST configu-
rations are required to completely test the BUTs [6]. Since
the contents of the PLB flip-flop cannot be read by the
processor core, dynamic partial reconfiguration by the
processor core is used to transform the ORAs into a shift
register to retrieve the BIST results at the end of each set
of four BIST configurations, referred test session. The
logic BIST architecture is then flipped about the vertical
axis to test those PLBs not tested during the first test ses-
sion. As a result, all PLBs are tested in two test sessions.
However, the local routing architecture of the FPGA core
and the PLB architecture allow only a single X output and
a single Y output from adjacent BUTs to be observed by a

Y
X Y

Y
X

PPLBB

PLB

PLB PLB

PLB PLB

X Y X

PLB PLB PLB

a) local routing b) global routing
Figure 3. Programmable Routing Resources

PLB

=PIP

Y
LUT

X
LUT

X

W

Y

Z

1
0 config

mem bit clk
set/reset

L
to global

routing

Y

X

to local
routing

to local
routing

Figure 2. Programmable Logic Block

a) West Session b) East Session

=TPG
=BUT
=ORA

Routing
Scheme 1

Routing

Scheme 2

Figure 4. Logic BIST Architecture

Prepress
309

given ORA. Therefore, an alternating routing scheme was
devised which allows complete observability of the out-
puts of the BUTs [6]. In the original logic BIST imple-
mentation described in [6], the two test sessions shown in
Figure 4 were rotated by 90°, for a total of 16 BIST con-
figurations, to overcome low fault coverage along the
edges of the array. However, when the processor core is
used for dynamic partial reconfiguration of the FPGA
core for BIST, a more efficient procedure is to execute
each of the test sessions shown in Figure 4 twice, once for
each of the two routing schemes. In this improved
method, the BIST results are retrieved from the ORAs at
the end of each test session for a given routing scheme,
while in the original approach, BIST results had to be
retrieved at the end of each BIST configuration.

The small 128-bit RAM cores dispersed throughout
the FPGA core and located in every 4×4 array of PLBs
have all inputs and outputs accessible by the PLBs and
routing resources of the FPGA core. Therefore, these
RAMs can be tested by the FPGA core with PLBs config-
ured to function as TPGs and ORAs [6]. However, we
found that a more efficient method for partial reconfigura-
tion of the FPGA core by the embedded processor is to
implement the TPG functionality as a program executed
by the processor core. This minimizes the number of
unique reconfigurations of PLBs in the FPGA core by the
processor core and, as a result, the size and runtime of the
program to be executed by the processor core for BIST of
the RAMs in the FPGA core.

The RAM BIST architectures used are illustrated in
Figure 5. A total of three RAM BIST configurations are
required to completely test these RAMs and all of the
RAMs are tested in parallel. The RAMs are tested in their
synchronous dual-port mode using a test algorithm similar
to the dual-port RAM test described in [5]. The March-LR
algorithm [9] is used to test the RAMs in their synchro-
nous single-port mode and the March Y algorithm, as
described in [10], is used to test the asynchronous single-
port mode. Background data sequences are used with the
March-LR algorithm to detect neighborhood pattern sen-
sitive and intra-word coupling faults [11]. For the dual-
port RAM, the BIST architecture (Figure 5b) is similar to
that of logic BIST where the outputs of neighboring
RAMs are compared by a set of ORAs. In the single-port
RAM modes, however, the AVR processor core can eas-

ily generate the expected results as part of its TPG func-
tionality. These expected results are then compared in the
ORA with the outputs of the RAM under test (Figure 5a).

4. BIST-BASED DIAGNOSIS
Two diagnostic procedures for RAM BIST were de-

veloped as a result of the two different BIST architec-
tures. In the single-port RAM BIST architecture (Figure
5a), the TPG function performed by the processor core
also produces the expected read data results along with
the test patterns sent to the RAMs. The expected read data
results are sent to the ORAs and are compared to the ac-
tual read data from each RAM under test with any mis-
matches encountered latched in the ORA until retrieval of
the BIST results at the end of each BIST sequence. The
ORAs incorporate a shift register mode of operation to
facilitate shifting the BIST results from each ORA
through the shift register to the processor core of the SoC.
Each ORA corresponds to a single bit of the 4-bit words
of the RAMs. The position of the ORA in the PLB array,
and the corresponding RAM with which it is associated, is
determined by the ORA’s position in the shift register. As
a result of the ORA comparison of the RAM under test
outputs with the expected read results produced by the
TPG, the diagnostic procedure for the single-port RAM
modes of operation is straight forward. The diagnostic
procedure looks for ORA failure indications (logic 1s)
and translates the positions based on the shift register or-
der to identify not only which RAMs are faulty but also
which bits in a given RAM are faulty. A faulty ORA can
mimic a fault in its corresponding RAM, but since the
PLBs used to construct the ORAs are tested and diag-
nosed during BIST of the PLBs, the faulty ORA can be
identified.

The diagnostic procedure for the dual-port RAM
mode of operation is more complicated since the outputs
of two RAMs are compared to detect mismatches that
result from faults in one or both of the RAMs. It is possi-
ble that equivalent faults in two RAMs being compared
by the same ORA will go undetected. However, RAMs in
the middle of the FPGA are being observed by two sets of
ORAs and being compared to a different RAM in each set
of ORAs such that the few combinations of faulty RAMs
that can go undetected by the BIST approach is highly
improbable; for example, all RAMs in a row of the FPGA
would have to have equivalent faults to go undetected.
The diagnostic procedure is based on the Multiple Faulty
Cell Locator (MULTICELLO) algorithm originally devel-
oped for diagnosing faulty PLBs in FPGAs [1]. The pro-
cedure assumes a column (or row) based BIST architec-
ture where columns (or rows) of BUTs (or RAMs in this
case) are observed by ORAs in adjacent columns. The
procedure also assumes there are at most two consecutive
BUTs (or RAMs) with equivalent faults. The steps of the
diagnostic procedure, as applied to RAMs with an exam-
ple of a 7×7 array of dual-port RAMs, are as follows: Figure 5. RAM BIST Architectures

=TPG =RAM =ORA

a) single-port RAM b) dual-port RAM

A
V
R

A
V
R

expected results

test patterns test patterns

Prepress
310

Step 1. Record the ORA results and initialize the
faulty/fault-free status of all RAMs under test as unknown,
indicated by an empty entry in the table. This is illustrated
in the Step 1 example below where a 7×7 array of RAM
cores is used. The columns of RAMs are denoted as R1 to
R7 with the ORAs denoted as Oij where i and j are the
RAM columns to the left and right of the ORA, respec-
tively. A ‘1’ in an ORA column entry indicates that a fail-
ure was observed by at least one of the four ORAs associ-
ated with each output of the 4-bit word RAM for that row.
A ‘0’ indicates that no failure was observed by the ORA.

Step 1 Example
row R1 O12 R2 O23 R3 O34 R4 O45 R5 O56 R6 O67 R7

1 0 0 0 1 1 0
2 0 0 1 1 0 0
3 1 1 0 0 1 1
4 0 0 0 0 0 0
5 0 0 0 1 1 1
6 1 0 0 0 0 0
7 0 0 1 0 0 0

Step 2. In each row, for every two consecutive ORAs
with 0s, enter a 0 for the RAM under test between them to
indicate that the RAM is fault-free. This is illustrated in
the Step 2 example below where new entries are marked
in bold while entries from the previous step are shown in
non-bold text. At this point in the example, we have de-
termined that 19 of the 49 RAMs are fault-free.

Step 2 Example
row R1 O12 R2 O23 R3 O34 R4 O45 R5 O56 R6 O67 R7

1 0 0 0 0 0 1 1 0
2 0 0 0 1 1 0 0 0
3 1 1 0 0 0 1 1
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 1 1
6 1 0 0 0 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 0

Step 3. In each row, for every two adjacent 0s followed
by an unknown RAM, enter a 0 in the empty cell to indi-
cate that the RAM is fault-free. This is illustrated in the
Step 3 example below where new entries are shown in
bold. At this point in the example, we have determined
that 37 of the 49 RAMs are fault-free.

Step 3 Example
row R1 O12 R2 O23 R3 O34 R4 O45 R5 O56 R6 O67 R7

1 0 0 0 0 0 0 0 1 1 0
2 0 0 0 0 0 1 1 0 0 0 0 0
3 1 1 0 0 0 0 0 1 1
4 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1 1 1
6 1 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0 0 0 0 0

Step 4. In each row, for every adjacent 0 and 1 followed
by an unknown RAM, enter a 1 in the empty cell to indi-
cate that the RAM is faulty. This is illustrated in the Step
4 example where new entries are shown in bold. At this
point we have determined that 6 of the 49 RAMs are
faulty and 37 are fault-free.

Step 4 Example
row R1 O12 R2 O23 R3 O34 R4 O45 R5 O56 R6 O67 R7

1 0 0 0 0 0 0 0 1 1 1 0
2 0 0 0 0 0 1 1 1 0 0 0 0 0
3 1 1 1 0 0 0 0 0 1 1 1
4 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1 1 1 1
6 1 1 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0 0 0 0 0

Step 5. Consistency check: If an ORA indicates a failure
but the RAMs on both sides of the ORA are determined to
be fault-free, then there is a fault either in the ORA or in
the routing resources between one of the RAMs and the
ORA. In the Step 4 example above, there is an ORA in-
consistency in row 7 of the array indicating a fault in the
ORA (or its associated routing) located between RAM
columns 3 and 4.

Step 6. If all RAMs have been marked as faulty or fault-
free then a unique diagnosis has been obtained; other-
wise, any RAM that remains marked as unknown may be
faulty. In the Step 4 example above, we see that the re-
maining 6 of the 49 RAMs are unknown in terms of their
faulty/fault-free status. In row 1, the RAMs in columns 6
and 7 could fault-free or they could have equivalent
faults. In row 3, the RAMs in columns 1 and 7 could be
faulty or fault-free. In row 5, one (or both) of the two
RAMs in column 6 or 7 is faulty, we just don’t know
which one.

As can be seen in the Step 4 example, the RAMs
with unknown status are located near the edges of the
array where diagnostic resolution is lower due to the
RAMs along the edge being observed by only one ORA.
These ambiguities in the diagnosis can be removed by
rotating the RAM BIST architecture by 90° where rows of
ORAs are comparing rows of RAMs, such that the sets of
RAMs being compared are orthogonal, and reapplying the
diagnostic procedure to the new BIST results. This im-
proves diagnostic resolution at the cost of doubling the
testing time; however, a unique diagnosis can be obtained
for almost any combination of faulty RAMs. It should
also be noted that the examples shown here assume a sin-
gle ORA for the complete 4-bit word RAM. In reality, the
diagnostic algorithm is applied to the four ORAs associ-
ated with the 4-bit word RAMs such that it is more likely
that unique diagnosis will be obtained without the need
for rotation since any known faulty bit in a RAM would
indicate that the RAM is faulty. In addition, diagnostic
results from the single-port RAM BIST can be used to
remove ambiguities in some cases.

The diagnostic procedure for the PLBs in the FPGA
core is complicated by the routing scheme used to observe
both X and Y outputs of the BUTs by the ORAs. The
MULTICELLO diagnostic procedure, as described in [1],
only works on rows or columns of alternating BUTs and
ORAs, and as a result, cannot be directly applied to the

Prepress
311

“zigzag” pattern of the BUT-to-ORA connections across
the rows, as shown in Figure 4 and, more specifically, by
the dotted and dashed lines in Figure 6a. This zigzag con-
nection is required as a result of the local routing architec-
ture of the FPGA core in conjunction with the PLB archi-
tecture allowing only a single X output and a single Y
output from adjacent BUTs to be observed by a given
ORA. One solution is to translate the positions of the
BUTs and ORAs with respect to the BIST results such
that the translated BUTs and ORAs lie in the same row
(as shown in Figure 6b), apply the MULTICELLO diagnos-
tic procedure, and then translate the BUTs and ORAs
back to their true position for identification of the faulty
and fault-free PLBs in the FPGA core. This translation is
relatively straight forward, particularly when pairs of
rows of PLBs are grouped together to form the zigzag
connection pattern as illustrated in Figures 4 and 6a. Fur-
thermore, this allows the same basic diagnostic program
used in the processor core for the dual-port RAM diagno-
sis to be used for faulty PLB diagnosis as long as the ap-
propriate BUT and ORA positions are translated before
Step 1 and again after Step 5 of the diagnostic procedure
given above. As in the case of RAM BIST, potentially
faulty PLBs determined as unknown by the diagnostic
procedure during logic BIST can be determined to be
faulty or fault-free in most cases by rotating the logic
BIST architecture illustrated in Figure 4 by 90° and ap-
plying the diagnostic procedure to the new BIST results.

5. EXPERIMENTAL RESULTS
The diagnostic algorithms described above have

been implemented and verified in compiled C programs
that have been downloaded and executed in the embedded
processor core of the Atmel AT94K series SoC. The pro-
grams reconfigure and execute BIST, and retrieve the
results of each BIST sequence. At the conclusion of each
BIST sequence, the processor core applies the appropriate
diagnostic procedure for that particular BIST architecture
(logic or RAM) to the BIST results that have been re-
trieved and stored in the Data RAM of the SoC.

Upon completion of the diagnostic procedure, the
processor core reports the diagnostic results to a higher
level controlling processor (a PC in our environment).
Results fall into any one of three possible categories: 1)
faulty, 2) unknown, or 3) ORA inconsistency. In all three
cases, the row and column number of each faulty or sus-
pected faulty (unknown) resource is reported to facilitate
reconfiguration around the faulty resources for fault toler-
ant applications. In the first two cases for RAM BIST
architectures, the faulty bit or bits are also reported. If the
faulty bits are not being used by the current system appli-

cation, then the system configuration can be loaded into
the FPGA without any reconfiguration to avoid the
fault(s). On the other hand, if the bits of the RAM that are
being used are determined to be faulty, reconfiguration of
the interconnection to and from the RAM can be applied
to allow the system function to avoid the faulty bit(s). If
the system application uses all bits of a RAM that has
been determined to be faulty, then reconfiguration to a
fault-free RAM site is required.

The on-chip diagnostic procedure for RAMs re-
quires a total of 1.1 Kbytes of Program Memory inde-
pendent of the array size as shown in Table 1. Only about
one-third of the total code is used to implement the
MULTICELLO algorithm, which is also used for diagnosing
faulty PLBs during logic BIST. The rest of the code is
used for translating the diagnostic results to the row and
column coordinates of the faulty resources and for report-
ing and transferring the diagnostic results to the control-
ling processor. Table 1 gives the worst-case processor
execution clock cycles for running diagnostics and inter-
preting the obtained results. The amount of BIST results
information to be processed by the diagnostics varies with
the size of the array and, as a result, the Data RAM mem-
ory required also varies, as indicated in Table 1. When
implementing diagnostics for logic BIST, the pre- and
post-processing performed before and after MULTICELLO,
to account for the zigzag BUT-to-ORA connections, re-
quires an additional 200 bytes of Program Memory. The
larger array of PLBs (compared to the array of RAMs) to
be diagnosed also requires additional Data RAM storage
and longer execution time. Therefore, the logic BIST di-
agnosis determines the maximum Program Memory and
Data RAM storage requirements since the same diagnos-
tic program is used for both RAMs and PLBs.

Table 1. Implementation of Diagnostics

Logic
Resource

Array
Size

Execution
Clock
Cycles

Program
Memory
(bytes)

Data
Memory
(bytes)

6×6 2,400 1130 20 RAMs 12×12 9,700 1130 73
24×24 32,000 1330 180 PLBs 48×48 110,000 1330 720

The logic BIST described in [6] relied on external
reconfiguration of the FPGA core for BIST as well as
external control for execution of the BIST sequence and
retrieval of the BIST results. The more efficient approach
of dynamic partial reconfiguration of the FPGA core by
the embedded processor core is illustrated in Table 2 in
terms of the number of processor execution clock cycles
and Program Memory size required for reconfiguration of
BIST, execution of the BIST sequence, and retrieval of
the BIST results for diagnosis in the processor core.

As shown in Table 2, using the processor core to re-
configure and control logic BIST produces a 33.7% re-
duction in the average number execution clock cycles per

a) before translation b) after translation

=BUT
=ORA

Figure 6. Logic BIST BUT-to-ORA Connections

Prepress
312

test configuration and a 47% reduction in Program Mem-
ory storage requirements. This is due in part to the fact
that ORA results can be retrieved after each group of four
test configurations without lost of fault detection informa-
tion instead of after every test configuration as is the case
in the externally controlled logic BIST approach. Another
factor is that the externally controlled logic BIST ap-
proach in [6] required running four test sessions (west,
east, south, and north) for complete testing while the
processor core controlled logic BIST approach only re-
quires running two test sessions (west and east), twice
each. Thus, the processor core controlled logic BIST re-
quires less reconfiguration clock cycles to completely test
the PLBs in the FPGA core.

Table 2. Logic BIST Reconfiguration Comparison

Compared Features External
Control [6]

Processor
Control

Number of Test Configurations 16 16
Program Memory Size (bytes) 6,372 3,380

Execution Clock Cycles 1,483,644 998,560
Average Cycles per Test Config. 92,728 62,410

The total resources required for on-chip BIST and
diagnosis of the PLB and RAM resources of the embed-
ded FPGA core are summarized in Table 3. The programs
for all three functions easily fit into the 32 Kbyte Program
Memory of the AT94K10 and AT94K40 while the Data
RAM memory requirements use only a small portion of
the total 16 Kbytes in available in these SoCs. As a result,
the BIST and diagnostic programs can be stored on-chip
for on-demand test and diagnosis of the logic and RAM
resources in the embedded FPGA core. These programs
have been downloaded and verified on actual AT94K10
devices (with a 24×24 array of PLBs and a 6×6 array of
RAMs) as well as on AT94K40 devices (with a 48×48
array of PLBs and a 12×12 array of RAMs).

Table 3. BIST and Diagnostics Summary

Testing
Function

Execution
Clock
Cycles

Program
Memory
(bytes)

Data
Memory
(bytes)

RAM BIST 398,100 1,860 72
Logic BIST 998,560 3,380 138
Diagnostics 110,000 1,330 720

Total 1,506,660 6,570 930

6. CONCLUSIONS
We have described the next step in the evolution of

built-in self-test, self-diagnosis, and self-repair of embed-
ded FPGA cores in SoC implementations. In this case, we
have moved on-chip, via the embedded processor core,
the reconfiguration of the FPGA core for BIST, the con-
trol of the execution of the BIST sequence, the retrieval of
the BIST results, and more importantly, the on-chip diag-
nosis of the FPGA core based on the failing BIST results.
Furthermore, the BIST and diagnostic programs can be

efficiently implemented in the program and data memo-
ries associated with the processor core, as demonstrated
by our experimental results. As a result, all testing and
diagnosis can be performed on-chip and on-demand, as
needed by the mission of the system application. The next
step in the evolutionary process is the integration of on-
chip algorithms to reconfigure the system function in-
tended for implementation in the embedded FPGA core to
avoid the faulty resources identified by the diagnostic
procedure for fault tolerant applications and operation.

7. ACKNOWLEDGEMENTS
The content of the information presented in this pa-

per does not necessarily reflect the position or the policy
of the federal government, and no official endorsement
should be inferred.

8. REFERENCES
[1] M. Abramovici and C. Stroud, “BIST-Based Test and

Diagnosis of FPGA Logic Blocks,” IEEE Trans. on
VLSI Systems, vol. 9, no. 1, pp. 159-172, 2001.

[2] X. Sun, J. Xu, B. Chan, and P. Trouborst, “Novel
Technique for BIST of FPGA Interconnects,” Proc.
IEEE Int’l Test Conf., pp. 795-803, 2000.

[3] D. Fernandes and I. Harris, “Application of Built-In
Self-Test for Interconnect Testing of FPGAs”, Proc.
IEEE Int’l Test Conf., pp. 1248-1257, 2003.

[4] C. Stroud, J. Nall, M. Lashinsky, and M. Abramovici,
“BIST-Based Diagnosis of FPGA Interconnect,”
Proc. IEEE Int’l Test Conf., pp. 618-627, 2002.

[5] C. Stroud, K. Leach, and T. Slaughter, “BIST for
Xilinx 4000 and Spartan Series FPGAs: A Case
Study”, Proc. IEEE Int’l Test Conf., pp. 1258-1267,
2003.

[6] C. Stroud, J. Sunwoo, S. Garimella, and J. Harris,
“Built-In Self-Test for System-on-Chip: A Case
Study”, Proc. IEEE Int’l Test Conf., pp. 837-846,
2004.

[7] M. Abramovici, C. Stroud, and J. Emmert, “Using
Embedded FPGAs for SoC Yield Improvement,”
Proc. ACM/IEEE Design Automation Conf., pp. 713-
724, 2002.

[8] __, “AT94K Series Field Programmable System
Level Integrated Circuit,” Datasheet 1138D, Atmel
Corp., 2001 (available at www.atmel.com).

[9] A. van de Goor, G. Gaydadjiev, V.N. Jarmolik, and
V.G. Mikitjuk, "March LR: A Test for Realistic
Linked Faults", Proc. IEEE VLSI Test Symp., pp.
272-280, 1996.

[10] C. Stroud, A Designer’s Guide to Built-In Self-Test,
Kluwer Academic Publishers, Boston MA, 2002.

[11] A. van de Goor, I. Tlili, and S. Hamdioui, ”Convert-
ing March Tests for Bit-Oriented Memories into
Tests for Word-Oriented Memories,” Proc. IEEE
Int’l Workshop on Memory Technology Design and
Testing, pp. 46-52, 1998.

Prepress
313

