
  

 

Abstract—The cortical microvasculature plays a key role in 

cortical tissue health by transporting important molecules via 

blood. Disruptions to blood flow in the microvasculature due to 

events such as stroke can thus induce damage to the cortex. 

Recent developments in two-photon microscopy have enabled in 

vivo imaging of anesthetized rat cortex in three dimensions. The 

microscopy data provide information about the geometry of the 

cortical microvasculature, length and diameter of the vessels in 

the imaged microvasculature network, and blood flow through 

a subset of those vessels. We demonstrate a model that achieves 

three goals. First, given a network of interconnected vessels and 

flow measurements on a subset of those vessels, we can estimate 

the flows in the remaining vessels. Second, we can determine 

which and how many vessels should have blood flow 

measurements taken to provide sufficient information to predict 

the unmeasured flows. Finally, the model enables us to predict 

effects of blockages in one or more vessels, indicating which 

vessels are most important to overall flow in the network. 

I. INTRODUCTION 

HE cortical microvasculature is comprised of a 

complicated network of arterioles, capillaries, and 

venules in which blood flow transports molecules to and 

from the cortical tissue. Since molecular transport across the 

blood-brain barrier primarily occurs in the microvasculature 

(especially the capillaries), these vessels are crucial to the 

metabolism, energetics, and functionality of the cortex. 

Occlusions, such as small stroke, are thus damaging to 

cortical health as they impede microcirculation. 

 Two-photon excited fluorescence (2PEF) microscopy 

allows in vivo imaging of the microvasculature to depths of 

1mm, as well as blood flow measurements in vessels by 

tracking the time-varying position of individual red blood 

cells. While all vessels within the microscope’s imaging 

range (typically a 1mm
3
 volume) can be resolved, blood flow 

measurements can be made on only a subset of these vessels 

due to experimental limitations, such as the practical 

duration of anesthesia for a rat. The goal of the research is to 

use computational tools to estimate the blood flows in all the 

vessels. A model is thus needed to relate the measured and 

unmeasured blood flows. Inputs to the model are vessel 

diameter, length, interconnection topology, and the measured 

blood flows. The output of the model is predictions for flow 

velocity in every imaged vessel.  
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II. METHODS AND MATERIALS 

Methods for the two-photon microscopy data acquisition 

on anesthetized rats are described in [1]. We model the 

microvasculature as a resistive circuit in which current, q, is 

blood flow, and voltage, V, is blood pressure. Each vessel in 

the network represents a resistive branch that connects two 

nodes, or vessel bifurcation points, in the microvasculature. 

The circuit obeys Kirchhoff’s current law (KCL), 

Kirchhoff’s voltage law (KVL), and Ohm’s law so that 

current is conserved at nodes and the voltage drop across a 

branch is proportional to the current through the branch and 

the branch’s resistance. The resistance, R, of each branch is 

computed using Poiseuille’s Law, assuming that the vessel is 

straight, which describes a relationship between length, l, 

radius, a, and blood viscosity, η, for nonturbulent flow. The 

formula is 
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In reality blood exhibits non-Newtonian flow 

characteristics because of its slurry-like composition of cells 

and plasma. To correct for non-Newtonian effects we use a 

diameter-dependent viscosity, η(d), described by [2], [3]. As 

shown in Fig. 6 of [2], the viscosity at hematocrit 45% varies 

by a factor of three over the range of vessel diameters greater 

than 10μm. 

 The microvasculature extends outside of the volume of 

brain that is imaged. Therefore there are branches of the 

circuit that connect a node within the image to a node outside 

the image, and thus the circuit is incomplete. We complete 

the circuit by placing a voltage source at each cut branch. 

We refer to these voltages as boundary voltages. We use a 

voltage source rather than a current source because the heart 

is more nearly a voltage source. One of the boundary 

voltages is arbitrarily set to zero to represent a ground node. 

Because of the many cut branches (30, shown in Fig. 2A), 

the circuit has many input and many output nodes. Vessel 

bifurcations where vessels split or join are called internal 

nodes. Voltages at these nodes are called internal voltages. 

Fig. 1a and Fig. 1b show a small scale example of an imaged 

microvasculature topology and its corresponding circuit 

model, respectively. Typical flows (μL/s) are shown in Fig. 

2A. 

 Let In be the nn  identity matrix. Let Nin be the 

number of internal nodes and Nbnd be the number of 
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boundary nodes. Let positive integers i,j{1,…,Nin+Nbnd} 

index the nodes. Let indexes {1,…,Nin} represent internal 

nodes, let indexes {Nin+1,…, Nin+Nbnd-1} represent boundary 

nodes where the boundary voltage sources are placed, and let 

index Nin + Nbnd represent the ground node.  

 
Fig. 1.  A small-scale example of a vessel topology with three internal 

nodes and five cut branches is shown in (a). The corresponding circuit 

model with voltage sources attached to the cut branches is shown in (b). 

 

For simplicity in the equations, it is assumed that every 

pair of internal nodes is connected, with Ri,j=Rj,i >0. Currents 

between nodes are represented by qi,j, where qi,j= -qj,i. 

Branches between nodes in our model that do not exist in the 

microvasculature will have resistance value of infinity. Thus 

current in these branches is zero, which in effect represents 

the absence of a connection between these nodes. Let the 

voltages at node i be denoted Vi. Define internal voltages,   

Vin=(V1,…,VNin)
T
, boundary voltages Vbnd 

=(VNin+1,…,VNin+Nbnd-1)
T
, and ground voltage Vg=(VNin+Nbnd). 

The vector containing both internal and boundary voltages 

(but not ground) is defined as V=(Vin
T

, Vbnd
T
)

T
. The choice of 

the definition of ground has no effect on the results because 

the measurements are exclusively currents which depend 

solely on voltage differences. 

At each of the Nin internal nodes, write KCL, i.e., the sum 

of the currents entering (or leaving) the node is zero. For 

n{1,…,Nin}, the form of the equations is 

0
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Subdivide the second sum to get 
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Use the fact that 
bndin NNV  = 0 since it is ground to get 
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Move terms that involve the boundary condition voltage 

sources to the right hand side of the equations to get 
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Define two matrices of conductances, denoted by 
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The negative of (7) can be written in the form 

bndin BVGV   (9) 

which implies 
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All currents can be computed by 
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Let α=(i,j), for (i,jξ={1,…,Nin+Nbnd}), be an index 

describing a flow by giving the nodes at either end of the 

branch. Let i=φ(α) and j=ψ(α) be the node indices. Let 
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 NNqqq   be a vector 

whose elements are the flows. Define C
bndNN 

 
with 

components Cα,n by 

175



  

.

)(

)(

0

/1

/1

)(),(

)(),(

,

otherwise

n

n

R

R

C n 







 











  (13) 

Then 

bndbnd

N

VLV
I

BG
CCVq

bnd

 

















1

1

)(
 (14) 

where L
bndNN 

 
 is defined by 
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We use a least squares approach to predict the boundary 

voltages as a function of measured currents. Specifically, 
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If the problem is underdetermined, then there are many 

Vbnd that exactly achieve the global minimum of 
2

2

)(),( )( bnd

measured Vqq   . (17) 

We take the particular Vbnd solution that has the minimum 

Euclidean norm. 

III. RESULTS 

An example of a neurovascular network is shown in Fig. 

2. It contains 66 vessel branches, of which 44 currents are 

measured. The branches with measured currents are marked 

in red in (a). All vessel lengths and diameters are also 

measured, which are qualitatively shown in (b). Two larger 

vessels run mostly horizontally across the top and bottom of 

the image, with smaller vessels between them. Measured 

vessel diameters range from 2.93-46.23μm. The network 

contains 34 vessel bifurcations, which represent 34 internal 

nodes in our model. The number of cut branches is 30. 

Therefore in our model we have 30 boundary voltage 

sources, one of which is set to 0V to represent the ground 

node. As a function of the current connection topology and 

number and location of measurements, these least square 

problems can have non-unique global minima, specifically a 

unique vector plus any vector lying in a subspace. Among 

these solutions, we pick the minimum Euclidean norm 

solution which is provided by the Moore-Penrose 

pseudoinverse which we compute with singular values in 

Matlab. In the particular case of Fig. 2, the rank deficiency is 

5.  

 
Fig. 2.  The same vessel topology with 66 branches is shown in (a) and (b). 

(a) shows in red the 44 vessels where flow is measured. The vessels where 

no measurements are taken are shown in black. (b) shows vessel diameters 

relative to the other vessels in the image. Flow in μL/s. Diameter in μm. 

 

 Fig. 3 shows the complete set of currents estimated 

from the least squares problem. The magnitude of the 

predicted flow velocity is proportional to the thickness of the 

drawn vessels. Three of our predicted currents flow in the 

reverse direction of their corresponding measured currents. 

To summarize the performance of the least squares problem, 

the ratio of the sum of the squared error to the sum of the 

squared data measurements,  
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is 0.8396/8.3360=0.1004. Reasons for r to not be smaller 

include the change in the animal’s physiology during the two 

plus hour experiment and the constraints implied by KCL 

and KVL.  

To assess the performance as a function of the number of 

measurements taken, we sequentially omit measurements at 

random, and calculate the resulting error after each omission. 

The high number of permutations of omission sequences 

prevents us from computing errors for all sequences, but a 

sufficient number of Monte Carlo runs give us a reasonable 
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understanding of the performance behavior. Fig. 4 shows 

statistics from 1000 of such random omitted-measurement 

runs. Error is computed as in (18). The median of the error 

contains two knees; one occurring after about 8 omitted 

measurements, and another after about 22. 

The dynamic range of the data is large (0.004 to 2.42 

μL/s) so when the flow in a large vessel is not measured and 

the prediction is inaccurate, the contribution to the error is 

much greater than the corresponding situation for a small 

vessel. Since there are few large vessels, different random 

omissions can have different numbers of such large vessels. 

Furthermore, at a junction of three vessels, measuring two of 

the vessels and applying KCL gives the entire set. This effect 

can ripple through the circuit since each time KCL provides 

a value for an unmeasured current which increases the 

probability that KCL at some connecting node will also 

provide a new current value. However, when an additional 

measurement is deleted leaving a node with only one 

measured current, KCL is not useful and the error can rise 

abruptly. 

 
Fig. 3.  The least squares solution in which all currents are estimated. 

Larger current magnitude estimates are depicted as wider vessels in the 

topology. 

 

 
Fig. 4.  Monte Carlo run statistics showing how error evolves as a greater 

number of measurements are left out of the least squares problem. The red 

mark is the median of the data. The edges of the blue box represent the 25th 

and 75th percentiles. 

IV. DISCUSSION AND CONCLUSIONS 

In this paper we present a methodology for determining a 

complete set of flows from a limited set of measured flows 

by using a linear current model and apply it to an 

experimental example. One attractive feature of the 

methodology is that multiple measurements of the same flow 

(possibly with variance information) can easily be 

incorporated. This type of information on flows in every 

vessel of the microvasculature and how flows adjust to 

obstruction has not been available in the past. 

 As is shown by the example in Fig. 2, the vessel 

network typically has many cut branches due to the 

complicated microvascular topology. Therefore the approach 

introduced in this paper, where cut branches are attached to 

voltage sources, is crucial for extracting flow information 

from these data sets. As is shown in Fig. 3, there is a wide 

range of flows, which is partly correlated with the wide range 

in vessel diameters.  

 Fig. 4 demonstrates that some measurements are much 

more important than others. Because we see that error in a 

Monte Carlo run typically increases monotonically with 

number of omitted measurements, the high variability in 

error in the central portion of the graph means  that certain 

sequences of omitted measurements can result in low error 

for a large number of vessel omissions, while other 

sequences result in high error very early on. This is 

important for the design of experiments, since measuring 

certain vessels is crucial to accurately estimating the 

behavior of the rest of the network. A similar Monte Carlo 

calculation (not shown) can be done to evaluate the 

robustness of the network to occlusion of one or more 

vessels. Occlusion corresponds to a microstroke and to 

setting resistance in the affected branch to infinity. Quantities 

such as total flow into capillaries measure the robustness of 

the network. 

As the microscopy technology advances so that the flow in 

a vessel can typically be measured multiple times, the model 

could be augmented with a temporal model which describes 

the evolution of the animal’s neurocirculation under 

anesthesia which might be useful in the management of 

human anesthesia. 
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