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Abstract. A daily-wear wearable system is one of the most convenient 

mediums in practical application scenario of transferring various information 

data or services between two users as well as between a user and a device. To 

implement this service scenario, we chose to develop a wearable forearm 

mounted accelerometer based input system. A set of gesture commands was 

defined by analyzing intuitive forearm movements. A hardware system and 

software recognition engine that utilizes the accelerometer sensor data to 

recognize the gesture commands were implemented and tested. This paper 

describes the development techniques of a wearable gesture recognition system. 

It also includes discussions of software and hardware design and how variations 

in these affected gesture recognition rate by analyzing experimental results 

from the actual implementations. 
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1   Introduction 

Wearable devices are well-known for their use in specialized fields such as medicine-

art, sports, gaming, and sign language recognition [1]. However, they can also be used 

everyday to increase the productivity and convenience of our normal life. One 

currently commonplace example would be when dealing with information in an 

electronic format. We often encounter situations where someone asks another person 

for a particular data file. Such files might be stored on a USB flash disk or CD-ROM 

and perhaps carried in our pockets or briefcases. Without accessing a computer, it is 

impossible to use these devices. However, wearable computers have the potential to 

achieve this task quickly, easily and seem lessly. For example, one user could make a 

pointing gesture to trigger a file transfer to another wearable system wearer. The 

advantage of this approach is that we do not have to look for computers to do the task; 

instead, the wearable system can recognize intuitive gestures to do the task for us. 

We can broaden this service scenario to other diverse situations so that the 

wearable system can interact with various objects like multimedia appliances. Based 



on this scenario, we targeted the development of the wearable system that can be 

operated by intuitive forearm gestures using an accelerometer sensor. One advantage 

of using an accelerometer sensor-based wearable system is its unrestricted operating 

environment where extensive vision-based device for tracking gestures are not 

required. By developing specific and customized gesture commands for the scenario, 

we suggest that we can avoid using more than one accelerometer sensors, which will 

reduce power consumption [2]. In software, there are intelligent algorithms that utilize 

neural networks or Hidden Markov Model (HMM) to power gesture recognition 

engines [3-7]. They have been used widely for recognizing human gestures, however 

they require reasonable amounts of memory and processing power and are perhaps 

not suitable for a low-power wearable system. This prompted us to avoid the use of 

such algorithms and develop a light-weight robust engine customized for our service 

scenario defined. 

The paper begins with an overview of related work discussing a number of gesture 

recognition devices in Section 2. The service scenario that we’ve targeted for our 

gesture recognition device is presented in Section 3 followed by the definition and 

evaluation process of the gesture commands in Section 4. Section 5 will discuss the 

development of a customized software gesture recognition engine and the hardware 

design process that includes the determination of optimal accelerometer sensor 

location. Discussions from the final evaluation process will be in Section 6 and the 

paper concludes in Section 7. 

2   Related Work 

Methods of recognizing gestures are widely investigated using various sensing 

devices and software implementations [1-12]. It is known that gesture recognition 

algorithms such as neural networks and the HMM model technique are effective. 

However, most of these systems deal with vision based recognition, and are subject to 

environmental restrictions such as that they are unsuitable in scenarios where the 

background environment is changing as the user moves in real world [1]. 

One previous system uses accelerometer sensors placed on gloves and represents 

the most directly relevant work. The accelerometer sensors were placed on every 

finger and both wrists to monitor hand shape without the use of cameras [13]. 

Avoiding vision-based techniques could give more mobility and robustness, however 

the gesture glove could also lead to problems if we want to use it for daily use 

because it covers all five fingers and palm area obstructing the normal use of the hand 

[1][9]. 

Rekimoto’s ‘GestureWrist’ seemed to closely relate to our study in terms of the 

form factor by adopting a wristwatch type device that enables a hands-free operation 

on both hands [9]. The ‘GestureWrist’ mainly uses the cross-sectional shape of the 

wrist to detect hand motions, as well as a 2-axis accelerometer sensor embedded on 

the wristwatch to detect inclination of the forearm. It also notes other related gesture 

based input devices such as [10-12] are not sufficiently unobtrusive for daily wear. 

Unfortunately, use of a 2-axis accelerometer sensor would prevent detecting other 

various forearm movements other than inclination. 



Similar service to what we’ve targeted for our study can be seen in work by 

Khotake [19]. The ‘InfoStick’ is a small handheld device that enables a drag-and-drop 

operation by pointing at the target objects by using a small video camera, buttons and 

a microprocessor [19]. Although the results demonstrated a positive interaction 

technique, it has environmental restrictions because it recognizes objects with the 

camera, and the device had to hold by one hand which prevented the hands-free 

operations. 

In this work, we developed a wearable device using gesture defined by intuitive 

forearm movements that were not considered in the previous research. From these 

movements, we define gesture commands which result in development of a 

customized recognition engine. Considering mobility is also important for wearable 

devices. We want to ensure our device is wearable anytime, anywhere, supports 

hands-free operations and uses the minimal possible sensors (requires only one 3-axis 

accelerometer sensor in this study) that would help elongate system’s run time by 

consuming low power. 

3   Application Scenario and Wearable System 

Our application scenario involves a daily-wear wearable gesture recognition system 

can effectively command information, data or services to be transferred to other 

wearers or devices by making an intuitive pointing gestures. Data or services on the 

targeting devices can also be controlled using intuitive gesture commands. We argue 

that a wearable band type of gesture recognition device would be greatly beneficial 

for such activities. We defined a scenario for dealing with multimedia services: 

A wearer named ‘Ashley’ navigates through some movie icons and selects one of them 

to watch a movie through her Head-Mounted-Display (HMD). She can control the 

volume or skip chapters of the movie as she like. Ashley’s friends, ‘Brandon’ and 

‘Christopher’ show up to see Ashley. They get interested in what she is watching. 

Brandon and Christopher both ask Ashley to watch the movie with her. Ashley 

intuitively points the display device (such as television) near her so that everybody 

can watch the movie (Figure 1-a). Ashley adjusts the volume remotely by making a 

gesture. Brandon and Christopher have to go back home before the movie ends. 

Again, Ashley intuitively points at Brandon and Christopher, one at a time to transfer 

the movie file or the website link that directs to the movie so that they can watch it 

later (Figure 1-b). 

 

Note that the scenario can be extended to handle any general file and services. Also 

generalized transfers between devices are possible: a television to a digital frame, a 

home audio to a car audio system, a display device to a photo printer. However, we 

have selected the scenario of dealing with a movie service for this paper in order to 

achieve maximum demonstration effect because a movie can be seen easily with 

relatively simple setup of supporting devices. 



 

4   Defining Gesture Command 

Based on our application scenario, we have defined 12 commands designed to be 

sufficient to control general multimedia appliances. Note that most of the commands 

can be interpreted differently according to applications they are being used to control. 

It is also possible that combinations of two or more gesture commands result in more 

complex compound commands. 

Each command was then mapped to forearm gestures by considering a human’s 

intuitive gestures used to make each operation in the real world. For example, the 

‘Device Selection’ command is based on the act of pointing towards something, 

‘Select’ resembles marking something important within a circle, the ‘Left’ gesture 

command is when someone tries to drag an object from right to left, ‘Up’ is related to 

how someone tries to pick up an object from ground, and ‘volume up-continuously’ is 

made by considering the gesture when we make when we adjust the volume on an 

audio system by rotating a circular knob. Each command was made with a 

counterpart; a command which resulted in the opposite action. While we were 

defining the gesture commands, we were also evaluating them to see how intuitive 

they were for various people. 

Table 1.  Defined gesture table.  

Commands Gestures Commands Gestures 

Device Selection 

/Data Transfer  Enter/Select/Play 
 

Device Cancel 
 

Esc/Cancel/Stop 
 

Left/Rewind/previous  
Volume up (1 unit)  

 

Right/Fast forward/next  
Volume down (1 unit)  

 

Up/Continue 

 

 

Rotate right/Menu Navigation

/volume up (continuously)  
 

Down/Pause 

 

 
Rotate left/Menu Navigation

/volume down (continuously) 
 

 

Fig. 1. Service Scenario Diagram 
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5   Implementation of Hardware and Software 

As we began the hardware and software implementations that could recognize the 12 

gesture commands defined in the previous section, we investigated the use of an 

accelerometer sensor by utilizing one of the development sensor modules that 

includes Kionix KXM52-1050 tri-axis accelerometer sensor shown in Figure 2. The 

evaluation module includes one Kionix KXM52 tri-axis accelerometer sensor and an 

Analog-to-Digital Converter (ADC). It has the accelerometer sensor packaged in a 

5x5x1.8mm that detects acceleration and generates an analog voltage which is 

proportional to the acceleration. The analog value then converts to a digital value 

resulting in vector consists of x, y, z values. 

In order to observe the characteristics of the sensor module and investigate how we 

could utilize the sensor in our development, we started to gather accelerometer sensor 

data from various people when they performed each of our gestures while holding the 

evaluation module in an upright position. We assumed that the sensor was attached in 

an upright position in the forearm area where it could monitor the gestures. By 

analyzing this sensor data, we started to implement the first version of recognition 

engine. We argued that if using only one sensor was sufficient for our purposes, then 

this would help to implement a light-weight recognition engine that would result in a 

fast and reliable wearable system. From this simple evaluation, we determined that we 

could implement the customize recognition engine that can distinguish among our 12 

gesture commands. 

5.1   Placement of an Accelerometer Sensor 

Along with the development of the software recognition engine, we also continued 

our hardware design process. The most important hardware design issue we 

encountered was selecting the precise placement of the accelerometer sensor. We had 

already decided to locate it on the forearm, but the optimal position was important as 

it could affect the usability as well as the gesture recognition rate. For wearable 

design, the locations of hardware components on the body are often an important 

factor [16], which made us to design 3 prototypes for a experimental evaluation where 

the sensors were located differently as shown in Figure 3 (sensors are indicated with 

arrows in the figure). The locations were selected by investigating natural positions of 

hand and wrist area when we lift our forearm by bending the elbow until the forearm 

becomes perpendicular to the body as the posture seemed the most natural for making 

gesture command. The sensor was then placed on a flat surface resulting from the 

natural hand or arm posture so that the sensor can stay flat to generate robust output. 

Fig. 2. Kionix KXM52 tri-axis accelerometer evaluation module [14] 



The possible location of a button which can be used to signify the start and end of 

gesture was also considered at this time. 

 

 Type-a Type-b Type-c 

Sensor 

locations 

   

Button 

locations 

   
 

 

Although the type-c design, where the sensor was placed on the wrist, seemed the 

most hands-free and preferable for most wearable users, we initially speculated that 

the further the sensor was placed from the elbow and closer to the tip of the fingers, 

the greater the recognition rate would be. Note that the prototype-a and prototype-b in 

Figure 3 uses a glove for a stable placement of the sensor. However, wearing gloves is 

not ideal for everyday use and therefore it was outside of our target scenario. Instead, 

we wanted to see how the locations of the sensor affect our development by 

conducting an experiment that will be discussed in section 5.3. 

5.2   Gesture Recognition Engine 

First we classified each gesture command by the plane it traverses. Note that there are 

no gestures assigned that use only the y-axis because making gestures only traversing 

the y-axis did not seem natural but rather awkward. Other possible gesture commands 

can be added later if they seem suitable for the y-axis alone. 

The gesture recognition engine classifies each of the users’ movements according 

to the partitioning diagram shown in Figure 4. Each gesture data was preprocessed 

using normalizing and sub-sampling techniques and analyzed and characterized in 

terms of the maximum and minimum values of the acceleration along each axis and 

where they occur in time-vs.-acceleration plots as well as quantitative comparison of 

them in order to find parameters for the software recognition engine so that it can 

Fig. 4. Partitioning gesture commands in diagram 
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Fig. 3. Sensor and button locations (top view) 



recognize each command. In addition, as the command set increased, more geometric 

characteristics were considered such as the starting/end value and vertex (local 

maxima/minima) locations of each input vector. This method of extracting 

characteristic information to distinguish gesture commands was used to determine 

parameters to drive a rule-based recognition engine. 

5.3   Experiment Determining the Sensor Location 

After we implemented the first version of recognition engine, we conducted an 

experiment to determine the optimal location of the sensor as discussed in section 5.1. 

The study had 11 participants. 2 were female, 9 male, all were right-handed except 

one person. The mean age was 34. The goal of the experiment was to examine the 

relationship between the performance of the gesture recognition engine and hardware 

design by determining how the accelerometer sensor location affected gesture 

recognition rate. Each participant was asked try on our 3 different prototypes and 

buttons, then make every gesture command three times. All were asked to fill out a 

questionnaire (categorized as ‘excellent’, ‘good’, ‘average’, ‘somewhat hard’, ‘poor’) 

that asks how well the prototype device worked. The results are shown in Table 2 

(with responses scored from -2 to +2). 

Table 2. Questionnaire result 

 Sensor locations Button locations 

Type a b c a b c 

Score 5 4 9 13 1 3 

Table 3. Gesture recognition rate according to different sensor locations 

 Type-a Type-b Type-c 

Total % 65.2 55.9 72.6 

 

From Tables 2 and 3, we concluded that the sensor located on the wrist as shown in 

Figure 3 (type-c) gave the best recognition rate. Most of the testers seemed to share 

these sentiments as indicated by the questionnaire results illustrated in Table 2. One 

of the reasons why the type-c configuration showed the best result is that the 

accelerometer sensor is placed on the wrist so that the data has less variance than that 

derived from having the sensor on the top of the hand where it also monitors 

independent movements of the wrist. Removing this extra degree of freedom results 

in cleaner and more consistent data. This led us to the conclusion that monitoring 

wrist action (or forearm action) is the best way to monitor broad group of users with 

our hard-coded gesture recognition engine which is suitable to. The recognition rate 

of 72.6%, which was not yet considered acceptable, showed that the software 

recognition engine requires additional improvement with the sensor placed on the 

wrist and the users need a longer training period. 

Finally we further developed our gesture band prototype hardware design as shown 

in Figure 5. In this iteration, it can be worn on the forearm in order to enable the 

activities of controlling and transferring multimedia files. The software recognition 



engine was also improved to tailor it to the scenario where the accelerometer is fixed 

on the wrist to achieve the maximum recognition rate. Note that the gesture band has 

mobility as it has its own battery and processor unit (worn on elbow in Figure 5, 

I.MX21 on 266MHz) running an embedded operating system and supports wireless 

communication (IrDA transceiver, Bluetooth and Wireless LAN) [17]. The usage of 

the IrDA transceiver is to trigger the data transfer between the two wearers, or 

between one wearer and other devices. 

For the future commercial production, our prototype device can be separated into 

two pieces depends on its usage so that it can have smaller form factor. We think the 

two pieces will be 1) a wristband type gesture recognition unit and 2) a portable 

gateway unit, and they are paired together. 

6   Final Evaluation 

As an evaluation stage of our development process, we needed to compare the 

system with an existing system that is used for similar purposes. However, to the best 

of our knowledge, there is no such wearable device that utilizes only one 3-axis 

accelerometer sensor to recognize a small group of gesture set. One part that could be 

compared to the existing technology was the gesture recognition software module 

which was one of the critical factors in this project. Since the HMM based gesture 

recognition technique is most commonly used and well-approved, we spent time 

porting an HMM based recognition engine onto our device. To do this we used the 

Hidden Markov Toolkit (HTK) that is available from the Cambridge University HTK 

home page [18]. 

With the gesture recognition band shown in Figure 5, we let one of our 

experimental participants to use the device in a regular basis (once every two weeks) 

and make each of our gesture commands. We observed the improvements on the 

recognition rate from this user after the 3 months. This is shown in Table 4. This 

individual user became well adapted to the wearable gesture band by achieving a 

recognition rate of 96.7%. The same experiment participant was asked to use the 

HMM based gesture recognition band as well. The resulting recognition rate of 99% 

was better than that of the customized engine however the recognition time (of 1.4 

second) was not as quick as the customized engine (of 0.2 second). The actual number 

of lines in the code of the customized engine has 400 uncommented lines of code 

while the HMM based engine has 1170. For the compiled engine, the customized 

Fig. 5. Final prototype gesture band 



engine is 33Kbytes in size including required drivers such as USB driver and button 

driver, while the HMM based system is 550Kbytes including required libraries. 

Generally speaking, our customized rule-based engine has weaker expendability in 

terms of the recognizable gesture set compare to that of learning-based engine. 

However, when considering that the embedded systems usually have limited CPU 

power and memory, the recognition rate and the response time of the customized 

engine using a single accelerometer sensor attached on the top of the wrist 

demonstrates that our recognition engine and device can be useful. 

Table 4. Gesture recognition engine summary and performance 

 Customized Engine(1) HMM based Engine(2) Ratio (1)/(2) 

Recognition rate in % 96.7 99 0.977 

Recognition time in sec 0.2 1.4 0.143 

Number of lines of code 400 1170 0.342 

Size of the code in byte 12K 41K 0.293 

Size of compiled engine 33K 550K 0.060 

7   Conclusions 

We have presented a wearable system that can be worn on a forearm and that 

enables the practical application scenario of controlling and transferring various 

information or services. 

Analyzing intuitive gestures suitable to this scenario, we defined 12 specific 

gesture commands. We also developed a software recognition engine that receives 

and recognizes the gesture commands. The method used to develop the gesture 

recognition algorithm was to classify gesture commands in terms of x, y, z axis and x-

y, y-z, x-z planes, then design the engine such that it extracts commands by 

monitoring feature values of the preprocessed x, y, z data, while the x, y, z data is 

being cross-compared. Then we examined the relationship between the gesture 

recognition engines and the hardware construction design by discussing how we 

determined the optimal accelerometer sensor location. 

After going through the evaluation process of the development considering the 

recognition rate compared to the existing HMM based gesture recognition engine, we 

conclude that the gesture recognition band with an accelerometer sensor attached to 

the wrist showed potential to achieve a relatively high recognition rate in real-time 

operation. 

To summarize, we have developed a gesture recognition band that is suitable for a 

mobile environment with the considerations of wearability in such a way that the 

device could worn anytime, anywhere and supports hands-free operation. It provides a 

reasonable gesture recognition rate using the minimum possible sensors (requires only 

one 3-axis accelerometer sensor in this study). We are currently investigating how we 

could remove the buttons as well as to reduce the form factor to a wristwatch type 

wearable device. 
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