
A Distributed Wearable System based on Multimodal Fusion

Il-Yeon Cho1, John Sunwoo1, Hyun-Tae Jeong1, Yong-Ki Son1, Hee-Joong Ahn1,
Dong-Woo Lee1, Dong-Won Han1, and Cheol-Hoon Lee2

1Digital Home Research Division,
Electronics and Telecommunications Research Institute, Daejeon, Korea

{iycho, bistdude, htjeong, handcourage, hjahn, hermes, dwhan}@etri.re.kr
2System Software Laboratory, Department of Computer Engineering

Chungnam National University, Daejeon, Korea
clee@cnu.ac.kr

Abstract. Wearable computer can be worn anytime with the support of unre-
stricted communications and variety of services which provides maximum ca-
pability of information use. Key challenges in developing such wearable com-
puters are level of comfort that users do not feel what they wear, easy and intui-
tive user interface and power management technique. This paper suggests a
wearable system that consists of a wristwatch-type gesture recognition device
and a personal mobile gateway that functional input/output modules can be
freely plugged in and taken out. We describe our techniques implemented dur-
ing our wearable system development: 1) multimodal fusion engine that recog-
nizes voice and gesture simultaneously, 2) power management technique and 3)
gesture recognition engine. Finally, we evaluate the performance of our multi-
modal fusion engine, and show the power consumption measurement data of
our system built with the power management technique.

1 Introduction

People these days do not rely on PCs anymore as wire(less) internet spreads with the
trend of computers, communications, and electronics appliances merging together
into one. Instead, there is an increasing demand for new information terminal devices
which can connect to the network anytime and anywhere with a method that’s most
familiar and convenient. These information terminal devices enable us to use variety
of information freely and conveniently. This phenomenon tells us a factor which
influences the success or failure in this digital industry; how many diverse tasks we
do is not a factor, instead, it is how easy and simple we do the tasks with a user-
friendly and intuitive interface. Computer, fashion and clothing industry are merging
together into one in order to satisfy the needs of user interface, and these trials are
putting ahead the appearance of new-concept information terminal devices.

Wearable computers provide efficient services with various functions by combin-
ing functions of personal devices that are scattered and overlapped [1]. Sony devel-
oped GestureWrist that recognizes user’s hand gesture as an input [2]. U. Anlinker
studied trade-offs between the required computing and the allocation of communica-

tion resources during the wearable system design process where the wearable system
has input/output module distributed on human body [3].

In this paper we suggest a distributed wearable system that is constructed with the
WPGB (Wearable Pointing and Gesture Band) and WPS (Wearable Personal Station).
WPGB is a small wristwatch type device loaded with a compact gesture engine sup-
porting a low power operation and WPS is loaded with the multimodal fusion engine
that analyzes the gesture recognition result from WPGB and voice recognition result
from the WPS itself so that the user’s intended command can take place.

Fig. 1. Design of Wearable System

2 System Architecture

This section describes our proposed system design concept with the structure and
functions of hardware and software.

2.1 Design Considerations

Fig. 1 illustrated the construction of suggesting system. As the name stands, the
main function of WPGB is to select the object that needs to be controlled and send
commands using arm gestures. Default function when not selecting the other objects
is to control the wearable system on the user. It is designed to handle applications
such as selecting and controlling one of the devices near the user, and transferring
current contents or services to other devices freely. Applications such as content and
service transfer are possible between the two WPGB users. WPGB communicates to
WPS through Zigbee communication and uses IrDA for selecting devices to be con-
trolled.

Multimodal fusion engine runs in WPS so that it can merge a gesture recognition
result from WPGB and voice recognition result from the WPS and recognize to one
final command. WPS has a Text-To-Speech (TTS) module as well to give user feed-
backs according to recognition results.

Modality
Fusion

gesture

ZigBee

WPS

WPGB Target
SystemIrDA

WLAN

Bluetooth

Voice

command

ACK

select

Wearable System

ACK

ACK

2.2 WPGB (Wearable Pointing and Gesture Band)

We designed WPGB to have small form factor and power consumption. For the pro-
cessor we used i.MX21 [4] that supports voltage scaling and frequency scaling. Mul-
ti-Chip Package (MCP) memory and uni-colored OLED are used to build WPGB. We
made the power supply circuit that changes the system power level dynamically
through our application program.

There is a Kionix KXP84 3-axis accelerometer sensor [5] and a piezo-electronic
sensor equipped in the WPGB in order to recognize gestures and distinguish the start-
ing point of each gesture command using finger tapping recognition, respectively.
Additionally to give the user feedbacks, there are small-sized vibration motor, buzzer
and an OLED. Fig. 2 shows our WPGB prototype.

(a) Prototype (b) Software Structure

Fig. 2. Wearable Pointing and Gesture Band

Operating Systems that runs WPGB is ETRI-RTOS (eRTOS). eRTOS (see Fig.
2(b) has basis from the compact, low power operating system called iRTOS [6].
Current kernel size of the eRTOS is around 25KBytes and it operates well in the low
capacity RAM/ROM systems.

2.3 WPS (Wearable Personal Station)

WPS is a main platform of our system suggested through this work. It has a perfor-
mance of an average PDA system with the size and shape that is convenient to carry.
It provides functions for a personal mobile gateway. In order to provide such func-
tions, it supports WLAN, Bluetooth, Zigbee communication, and has dimension of
80mm x 54mm x 19mm. It runs on PXA272 [7] processor and supports both embed-
ded Linux and WinCE operating system. It is designed to be geared and used with
various peripheral modules in a selective way depending on the services. Fig. 3 illu-
strates the WPS module which can change its functionality and system configuration
by pairing with various output modules.

Fig. 3. Expandability of WPS

3 Core Technologies

This section describes core technologies that are implemented in our system sug-
gested through this paper. The core technologies are multimodal fusion engine, low
power scheme, gesture recognition engine and gesture segmentation cue method.

3.1 Multimodal Fusion Engine

We used PowerASR voice recognition engine from HCILAB for the WPS voice
recognition. PowerASR is the voice recognition engine developed for the embedded
system use that is user-independent and supports the recognition of variable vocabu-
lary (maximum of 200 words in a database) [8].

Fig. 4. Structure of Multimodal Fusion Engine

Advantages of the multimodal input system compare to the uni-modal system are

known as the reduced uncertainty and improved input accuracy in noisy environment
[9]. Methods of multimodal fusion are divided into two in overall: input feature level
fusion and semantic level fusion [10]. Our study chose semantic fusion strategy since
it is easy to add a new modality, and is convenient in maintaining. Software architec-
ture of our multimodal fusion engine is shown in Fig. 4.

ActionXML
(Rule)

ActionXML
Parser

History DB

Verifier

Feedback
Generator

Hypothesis
Engine

Rule DB

TTS Engine Audio User

Environment
Info. Data

Service Daemon

ASR

Gesture
Recognition

Engine

S
ervice D

aem
on

 A
dap

tor

Others
…

Modality Recognition
Engines Modality Fusion Engine

WPS
Main Module

WPS with
LCD ModuleWPS with

HMD Module

WPS with
AV Module

etc

WPS
Main Module

WPS with
LCD ModuleWPS with

HMD Module

WPS with
AV Module

etc

Operation sequence of the multimodal fusion engine is as follows. Fusion engine
extracts rules from the ActionXML file using the ActionXML Parser then saves the
rules in Rule database. User and system events that are recorded and time-stamped in
Service Daemon and Modality recognition engine are sent to Hypothesis engine
through the Service Daemon Adaptor. Hypothesis engine deduces what user intended
to command by referencing System Environment Information Data, History DB and
Rule DB where the past deduced results are recorded. Deduced results in this manner
are verified in Verifier and are sent to Service Daemon. Verifier finds an error and
notifies user via Feedback Generator.

Voice recognizer returns two candidates of recognition result, and gesture recog-
nizer returns one that is the most likely to what the user intended to commend. Com-
binations of the two (voice + gesture) recognition results are assigned to the com-
mands according to user’s needs and registered in ActionXML file. The following
example shows how the two commands in different modalities are combined into one
in order to achieve mutual complementary benefits. We get the mutual complementa-
ry benefits when the voice and gesture commands are defined for the same purpose.
For instance, both the voice command “NEXT” and gesture command “[RIGHT]”
can be mapped to the “ ” key in the keyboard. It can be useful in a noisy environ-
ment where the voice recognition results are often poor.

Within the mutual complementary policy described above, the following cases will
be considered “recognition fail” by the multimodal fusion engine and there will be no
resultant action.

- Both the voice and gesture recognizer fail to give recognition results.
- Voice and gesture recognizer give different recognition results.
In contrast, the following are the cases of “recognition success”.
- Both the voice and gesture recognizer give same recognition results.
- Only one of the two recognizer gives a successful recognition result.
Excluding the “recognition fail” case shown above, user can define the combina-

tions of voice and gesture in the ActionXML file and assign them to the final com-
mands user wants. Or, the user can find the cases of “recognition success” shown
above and register them in the ActionXML file. Combinations that are not registered
in the ActionXML file are processed as a recognition failure. However, for the par-
ticular combinations of voice and gesture that are often recognized wrong, we can
overcome this to a certain level by registering them to ActionXML file. The following
is an example of overcoming such case.

If the voice recognizer frequently misses to recognize the user’s voice command

“NEXT” and confuses as “TEXT”, then the user can register “TEXT” as same as
“NEXT” in ActionXML file so that the result of “TEXT” is recognized by the fusion
engine as “NEXT”. In this case, user may not want to assign “TEXT” command.

Our multimodal fusion engine suggested through this work is designed light

enough to be operated together with the voice recognizer, speech synthesizer, and
gesture recognizer within an embedded system such as our WPS system. It is imple-
mented to reduce the deduction (reasoning) procedure which takes a considerable
amount of time in the fusion engine by letting the user to define multimodal fusion

rules into ActionXML file directly. Finally it results in the load reduction of our fusion
engine so that it can be run on a lower performance embedded system that has small
resources.

3.2 Dynamic Power Management (DPM)

WPGB hardware supports the following features for DPM application: WPGB uses
Freescale’s i.MX21 as CPU. The CPU frequency can be configured as 133MHz and
66MHz. System bus frequency can be changed from 16MHz ~ 66MHz. The CPU
core voltage can be changed from 1.4V ~ 1.5V.

DPM and policy in WPGB are implemented based on the methods suggested in
[11-13] while considering WPGB hardware and software property.

3.3 Gesture Segmentation Cue

Generally, a hand gesture occurs subsequently after the previous hand movements
that maybe meaningless. In order to correctly analyze a user’s intended gesture com-
mand during such continuous hand movements, recognition engine has to know the
starting point and ending point of the gesture. This kind of gesture segmentation is-
sues are being a problem [14]. In our early development stage, we solve this gesture
segmentation problem by using a button that can be worn on a finger as illustrated in
Fig. 5(a) so that user can press the button only when making a meaningful gesture.
However, this system can be inconvenient for everyday life. In order to overcome this
inconvenience, we developed FingerTapButton that recognizes the bone-conduction
sound by touching a thumb and second finger and uses it as a hand gesture segmenta-
tion cue, which can avoid the use of mechanical buttons. WPGB only monitors data
from the time when the user taps his or her fingers until the user finishes gesture
command and stays still. Fig. 5(b) illustrates the basic principle of FingerTapButton.

(a) (b)

Fig. 5. Basic principle of FingerTapButton

3.4 Gesture Recognition Engine

We define 8 commands that are sufficient to control general multimedia appliances.
Each command is mapped to forearm gestures by considering our intuitive gestures
used in the real world.

Finger
Tapping

Bone-conduction sound
produced by finger tapping

Sensor

Button

Table 1. Defined gesture table.

Commands Gestures Commands Gestures

Device Selection Device Cancel
Right/Next Left/Previous
Volume up Volume down

Play Stop

The x, y and z sensor data will be sampled only when the user makes meaningful

gestures starting with FingerTapButton. Each gesture data is normalized to have the
fixed height of data range, and sub-sampled to filter out the noise and reduce the data
size to lessen the load when the engine analyzes the input. The preprocessed data is
analyzed and characterized in terms of 1) the maximum and minimum values of the
acceleration along each axis, 2) where they occur in time-vs.-acceleration plots and 3)
quantitative comparison of them in order to find parameters for the software recogni-
tion engine so that it can recognize each command. In addition, as the command set
increased, more geometric characteristics were considered such as the starting/end
value and vertex (local maxima/minima) locations of each input vector. This method
of extracting characteristic information and classifying them with the rule-based rec-
ognition engine is used to distinguish gesture commands [15].

4 System Evaluation

This section describes the use of our multimodal fusion engine that is implemented in
our suggesting wearable system.

4.1 Recognition Enhancement through Multimodal Fusion

As mentioned previously, advantage of multimodal fusion engine is its improved
recognition rate compare to that of individual recognition engine. In order to measure
the performance of our fusion engine, we used 6 gestures and 66 voice commands.
There were 5 test subjects (all males) and each subject was asked to make each com-
binational voice and gesture command for 10 times.

Fig. 6 shows the comparison of voice only recognition rate, gesture only recogni-
tion rate, and voice + gesture recognition. As shown in the Fig. 6, recognition rate
using the fusion engine is better than using the voice or gesture recognition engine
alone.

Fig. 6. Recognition rate of Voice/Gesture vs. multimodal fusion

4.2 Power Consumption of WPGB

WPGB hardware is designed to minimize the power consumption, and the operating
system runs the WPGB supports a power supply control interface for each component.
In order to measure the power consumption, we measured the current of the system
using Agilent 34411A digital multi-meter (in 2000 samples/sec) with the supply vol-
tage of 3.7V from Agilent E3648A power supply.

Table 2. DPM Policy

WPGB Task Operating
State

WPGB DPM Policy
Default Idle Scaling Load Scaling

FINGERTAP TASK 133/66@1.5V1 133/66@1.5V 88/44@1.45V

GESTURE TASK+1 133/66@1.5V 133/66@1.5V 133/66@1.5V

ICONVIEW2 TASK-1 133/66@1.5V 133/66@1.5V 66/33@1.425V

IDLE IDLE 133/66@1.5V 66/16@1.4V 66/16@1.4V

Considering the CPU requirements of the WPGB tasks, we decided the operating

state and applied DPM policy defined in section 3.2. Table 2 shows the WPGB DPM
policy of the four tasks.

Fig. 7 shows the measurement data for each policy. Portion noted as 1 in the fig-
ure is when the WPGB recognizes the starting point of a gesture using the Finger-
TapButton and gives vibration feedbacks through the vibration motor, 2 is when it
collects the accelerometer sensor data and recognizes the gesture, and 3 is when the
gesture results are being displayed on OLED.

Average current and power consumptions are shown in Table 3. As illustrated in
the table, we achieved an improvement of 30% in power saving under Idle Scaling
policy when compared to non-DPM system where the Idle Scaling policy has a power
saving mode only in the system idle state. Under Load Scaling policy which has pow-
er saving modes in both the idle state and task operation, there is almost an improve-
ment of 33% in power saving.

1 CPU frequency / system bus frequency @ CPU voltage
2 Display of recognition results on the OLED

Voice/Gesture Recognition vs. Modality Fusion

86%

88%

90%

92%

94%

96%

98%

R
ec

og
ni

tio
n

R
at

e

Voice
Gesture
Modality Fusion

Voice/Gesture Recognition vs. Modality Fusion

86%

88%

90%

92%

94%

96%

98%

R
ec

og
ni

tio
n

R
at

e

Voice
Gesture
Modality Fusion

Fig. 7. Current Profile with DPM Policies

When considering the capacity of the battery (300mAh) that powers the WPGB, it

has around 3 hours of system run time when DPM default policy is applied, however
by applying the DPM Load Scaling policy its run time increases by an hour.

Table 3. Power Consumption of WPGB

Policy Average Current
Consumption (mA)

Average Power
Consumption (mW) Power Saving (%)3

DPM Default 98.50 364.46 -

DPM IS 68.11 252.01 30.85

DPM LS 65.63 242.83 33.37

5 Conclusions

We presented our prototype that consists of a wristwatch type Wearable Pointing and
Gesture Band (WPGB) and a small sized Wearable Personal Station (WPS) that the
functional input/output modules can be freely plugged in and taken out. WPGB is
loaded with a compact low power gesture recognition engine in order to support ges-
ture command based user interface in the wearable computing environment. WPS has
a mass storage with a communication gateway and has multimodal fusion capability.

By measuring and analyzing the performance of our multimodal fusion engine, we
showed that using both voice and gesture input in a mutual supportive way results in
a better recognition rate compared to when using a single input modality. We also
showed that using a DPM technique gives us power savings by measuring and ana-
lyzing the power consumption rate in our WPGB system where it is operated by the
DPM enabled eRTOS.

3 Compare to DPM Default

DPM Default

40

60

80

100

120

140

160

180

0 1 2 3 4 5

Time (sec)

C
u
rr

e
n
t

(m
A
)

DPM IS(Idle Scaling)

40

60

80

100

120

140

160

180

0 1 2 3 4 5

Time (sec)

DPM LS(Load Scaling)

40

60

80

100

120

140

160

180

0 1 2 3 4 5

Time (sec)

1 32 1 32 1 32

References

1. T. Starner: The challenges of wearable computing Part 1. IEEE Micro Vol. 21. No. 4. July
(2001) 44-52

2. J. Rekimoto: GestureWrist and Gesture Pad: Unobtrusive Wearable Interaction Devices.
Proc. IEEE International Symposium on Wearable Computers (2001) 21-27

3. U. Anliker et al.: A systematic approach to the design of distributed wearable systems. IEEE
Trans. Computers, Vol.53. No.8. (2004) 1017-1033

4. i.MX21 Applications Processor Reference Manual, MC9238MX21RM, Rev.2 (2005)
5. ±2g Tri-Axis Digital Accelerometer Specifications, Part Number: KXP84-2050, Rev 1,

Kionix Inc (2006)
6. H.S. Park, et al.: Design of Open Architecture Real-Time OS Kernel. KISS, Vol. 2. (2002)

418-420
7. Intel PXA27x Processor Family Developer’s Manual (2006)
8. http://www.hcilab.co.kr
9. A. Corradini, M. Mehta, N.O. Bernsen, and J.C. Martin: Multimodal input fusion in human-

computer interaction. Proc. the NATO-ASI Conference on Data Fusion for Situation Moni-
toring, Incident Detection, Alert and Response Management (2003) 18-29

10. P.R. Cohen, M. Johnston, , D.R. McGee, S.L. Oviatt, J. Pittman, I. Smith, and J. Clow:
Quickset: Multimodal Interaction for Distributed Applications. Proc. the 5th International
Multimedia Conference, ACM Press (1997) 31-40

11. B. Brock and K. Rajamani: Dynamic Power Management for Embedded Systems. Proc.
IEEE International SOC Conference (2003) 416-419

12. IBM and MontaVista Software: Dynamic Power Management for Embedded systems.
http://www.research.ibm.com/arl/projects/dpm.html (2002)

13. CE linux forum: Power Management Specification _R2”,
http://tree.celinuxforum.org/CelfPubWiki/Power ManagementSpecification_5fR2 (2004)

14. P.A. Harling and A.D. N. Edwards: Hand tension as a gesture segmentation cue. Proc.
Gesture Workshop on Progress in Gestural Interaction (1996) 75-88

15. J. LaViola: A Survey of Hand Posture and Gesture Recognition Techniques and Technolo-
gy. Technical Report CS99-11. Dept. of Computer Science, Brown University. Providence,
Rhode Island (1999)

