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Abstract—Two embedded processor based fault injection
case studies are presented which are applicable to Field
Programmable Gate Arrays (FPGAs) and FPGA cores in
configurable System-on-Chip (SoC) implementations. The
case studies include embedded hard core and soft core
processors which manipulate configuration memory bits to
emulate physical and transient faults in the FPGA core in-
cluding shorts and opens in programmabl e interconnect and
many different faults in logic resources. The emulated
faults are used to evaluate fault detection capabilities of
Built-In Self-Test (BIST) approaches, including fault identi-
fication capabilities of diagnostic procedures, and to evalu-
ate the effect of Single Event Upsets (SEUS), including their
detection and correction. Embedded processor based ap-
proaches provide significant improvement over previous
fault injection techniques and, in turn, enable a more thor-
ough analysis of BIST, diagnosis, and SEU mitigation.

1. INTRODUCTION AND BACKGROUND
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the configuration memory. Shorts and opens inither-
connect network can be emulated along with almost a
fault in the logic resources that can be controligdcon-
figuration memory bits. When downloading the imted
system configuration, the faults to be emulated learin-
jected in the configuration data just prior to thetual
download process [1]. Alternatively, the intendsuhfigu-
ration can be downloaded with subsequent parttainigu-
ration used to inject and emulate the fault.

One of the first FPGA applications to use faultatjon
emulation was hardware acceleration techniquesfdolt
simulation [4]. However, the download time for ltainjec-
tion detracted from the hardware acceleration & ehtent
that the manipulation of configuration bits was rat@ned
and replaced by fault emulation circuitry that wasdeled
and downloaded with the circuit to be simulateddp] The
overhead of the additional fault emulation circpigmd its
associated routing was significant but acceptabkhé case

There are a number of Field Programmable Gate Arragf fault simulation [7]. The additional circuitand routing

(FPGA) applications that can make use of the paEserd

physical faults. These applications include BlnltSelf-

Test (BIST) of the FPGA itself [1], some fault-tcdet de-

sign techniques [2], and Single Event Upset (SE&pd

tion/correction techniques for FPGA configuratioremo-

ries [3]. These applications target FPGA devicesvall as

FPGA cores in configurable System-on-Chip (SoC)lénp
mentations. Verification, analysis, and evaluatidrthese
applications can be performed with the ability mject or

emulate physical faults in the FPGA.

It is difficult to find actual faulty devices andtidir use-
fulness is limited due to the fixed nature of tlalf [1].
Physical faults can be created by etching the ppakale-
vice and creating opens in routing resources fibaatl the
top level of interconnect metal for example, but@mgain
the usefulness of these devices is limited. A nedfieient
approach is to manipulate the configuration menity to
emulate physical faults in the device [4]. For rapée, a
stuck-at fault in a look-up table (LUT) bit can bmulated
by overwriting the particular configuration memdsif and
setting it to the desired stuck-at fault value. USEon the
other hand can be emulated by flipping the valubits in
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was not acceptable in the case of BIST approadhes the

goal was to maximize the resources under test yngaren

configuration such that there are no remaining uesEs

available to emulate faults. As a result, faujedtion via

configuration memory bit manipulation has been uerd

tensively to debug, verify, and analyze developmeht
BIST configurations and diagnostic procedures fBIGAs

[1][8]. Similarly, analysis of the affects of SE[& as well

as SEU detection and correction in FPGA configaorati
memories [9] can use manipulation of configuratinam-

ory bits and has been shown to be effective in ating

97% of the SEUs induced and observed in radiatiam:

ber experiments [3].

In this paper, we present two case studies of eddzbd
processors used to manipulate FPGA configuratiomong
bits for FPGA BIST and SEU detection/correction lagap
tions. The first case study uses a hard core edduedroc-
essor that has dedicated program and data memaities
write access to the configuration memory of an FRBAe
in a configurable SoC. In this case study, desdriin Sec-
tion 2, the device is the Atmel AT9K series Fielddram-
mable System Level Integrated Circuit (FPSLIC).eHec-
ond case study uses a soft core embedded prodesaar
FPGA for manipulation of configuration memory hiia an
internal configuration access port (ICAP). Thetsujre
processor is downloaded with the application tarpected
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with faults. In this case study, described in BecB, the
devices include Xilinx Virtex-4 and Virtex-5 FPGAgach
case study includes an overview of the device techires,
description of the fault injection emulation tedun, and
experimental results of the actual implementatidine pa-
per is summarized and concludes in Section 4.

2. HARD CORE PROCESSORCASE STUDY

The Atmel AT94K series configurable SoC consists of

an FPGA core, various RAM cores, and an 8-bit Adeah
Virtual RISC (AVR) microcontroller core as shown ig-
ure 1 [10]. Three types of memory resources irel[id]:
1) many small 324-bit RAMs distributed throughout the
FPGA core, 2) a 4-Kbyte to 16-Kbyte dual-port det&am
shared by AVR microcontroller and the FPGA cora] 8

a 20-Kbyte to 32-Kbyte program memory accessiblly on
by the AVR microcontroller and used for storing miae
code.

The AVR core is an 8-bit RISC architecture with 32
general purpose registers including a number dpperals
like watchdog timer, UART, etc [10]. There are t&bit
bi-directional general purpose /O ports. An 8-bit
directional data bus between the FPGA and AVR (con
trolled by the AVR) provides communications betweke
two cores. Whenever 8-bit data is written to @ad from)
the data bus by the AVR, a strobe signal to the ARGre
is generated on FPGAIOWE (or FPGAIORE) along with
one of 16 decoded select lines to the FPGA. Tamaip to
four external interrupts to the AVR along with Iferrupts
from the FPGA.
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Fig. 1. AT94K series SoC architecture

The FPGA core is constructed as a symmethbdl ar-
ray of programmable logic blocks (PLBs), whé&e48 for
the AT94K40 device (the largest AT94K series SoC) [10].
Each PLB contains two 3-input LUTs, a D flip-floand
additional multiplexers/gates. Every PLB has datiid
diagonal (X) and orthogonal (Y) local routing resms to
its neighboring PLBs, as shown in Figure 2a [10As
shown in Figure 2b, the vertical and horizontalbglorout-
ing resources associated with each PLB traverseah af
four PLBs &4 lines) and eight PLBsx8 lines). Vertical
and horizontal bus repeaters are placed at thedaoigs of
every &4 array of PLBs (shown in Figure 2c for the hori-
zontal bus) to prevent signal degradation in leypgthd/or

heavily loaded signal nets. The repeaters alstitée con-
nections betweer4 andx8 lines as seen in Figure 2d.
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The AVR microcontroller core can write to (but mead
from) the FPGA core configuration memory such tte
FPGA can be dynamically reconfigured (either fudlypar-
tially) by the AVR core during normal system opérat
[10]. The FPGA configuration memory access isa/ia4-
bit address bus and 8-bit data bus. The addresgsIparti-
tioned into three 8-bit components referred to B&SAX,
FPGAY, and FPGAZ. FPGAX and FPGAY correspond to
horizontal and vertical location of the programnealbé-
source in the array while FPGAZ corresponds to ifipec
logic/routing resources within the specified pragmaable
resource. A write to the 8-bit data bus, FPGAButEs in a
write cycle to a byte of the FPGA configuration nugn

Sets of BIST configurations were developed to thst
various programmable resources in the FPGA corleidAac
ing PLBs, RAMs, and the programmable interconnext n
work with horizontal and vertical repeaters [1Quring the
verification and analysis of the sets of BIST cgufations,
every configuration bit associated with the spedifire-
source under test was injected in turn with a stte@ fault
and a stuck-at-1 fault. For each fault injectdte BIST
configurations that target that resource were app(with
the injected fault present). The BIST results ¢éatk which
BIST configurations, if any, detected the emulafadit.
Because of the large number of faults to be emdiléteice
the number of configuration bits) for each BIST figura-
tion, injecting the faults in the configuration dolwad file
prior to each download takes considerable timendicated
by the “download run time” in Table I. Note thaartk
clock and set/reset lines are associated with éngcal re-
peaters, hence, the larger number of configurdiitmwhen
compared to the horizontal repeaters and assoaciaiteiehg.



TABLE | Embedded Fault Injection Run Time Analysis for AR

Resource | ST | Corf | Tota | Dourload | Frecessr
e | 5 | [ | i, | A
R\{ee[_)rgg?;rs 20 1 142 53 rTﬁrln L.}L r:ér::
Repeaters| 20 | 65 | 10| somin | aosec
Free RAM 3 4 8 13 min 14 sec

BIST configurations can also be generated and ¢gdcu
by the embedded AVR processor [11]. In this cdaelt
injection emulation is somewhat more difficult sinthe
processor core has write-only access to the FPG¥igre
ration memory. If the processor core could alsadréhe
configuration memory, it could perform a read-mgsdifrite
(RMW) operation to inject a fault at any desiredhfogura-
tion memory bit. With write-only access, one matdo
know the normal BIST configuration data for eacinfigu-
ration memory byte in order to inject a single fauithout
disturbing the other seven bits of configuratiotag@ther-
wise, we could be injecting eight faults at a tim&hen the
embedded processor is generating the BIST contigara
the information is contained within that residembgram.
As a result, the fault injection emulation can mogalisti-
cally be performed from the embedded processdrpadih
the development effort is greater without the RM#ypabil-
ity. Table | gives the run time when using the edded
processor core to perform fault injection emulatalong
with the BIST configuration generation and exeautioA
speed-up of almost a factor of 60 is obtained wihenem-
bedded processor core performs the fault injecéionla-
tion analysis including BIST configuration geneoati BIST
sequence execution, and BIST results retrieval.

3. SOFT CORE PROCESSORCASE STUDY

The configuration memories of Virtex-4 [12] and ¥ix-
5 [13] FPGAs are partitioned into frames, wherehefiaame
has a fixed length of 1,312 bits, or forty-one 32ykords.
A frame is the smallest addressable segment ofdhégu-
ration memory; therefore all memory write/read @piens
must be performed on whole frames. In Virtex-4ides, a
frame contains the configuration data for 16 rofvsanfig-
urable logic blocks (CLBs) and input/output (I/Glgs$, or

put/output data to/from the configuration memoryhere
are other registers such as the status (STAT) tezgithe
cyclic redundancy check (CRC) register, and the mand
(CMD) register which stores the next register openato
perform such as “Write FAR” or “Read FDRO".

write/read to/from the configuration memory, a comaion
of these registers must be used. These regisei@caessi-
ble from both Boundary Scan and SelectMAP confitjona
interfaces as well as the internal configurationess port
(ICAP) located in, and accessible from, the FPG#ifa

Emulated SEUSs, or faults injected for BIST, requhie
reconfiguration of a single configuration memory &fter
system configuration, or each BIST configuratiendown-
loaded. Furthermore, the contents of the framéchvbon-
figure multiple rows of resources, must be presghering
reconfiguration for emulated SEU/fault injectiof®ur ap-
proach takes advantage of partial reconfiguratiod sead
back capabilities of Virtex-4 and Virtex-5 FPGAsitople-
ment RMW for bit-level partial reconfiguration.

To

3.1. Overview of Approach

The basic approach begins with locating the fraom c
taining the target bit for fault or SEU emulatiomhe frame
is read in its entirety and stored. Next, the eatgt is lo-
cated within the frame, and overwritten with thesided
stuck-at value in the case of a fault. This appicaso sup-
ports emulation of SEUs by simply inverting thegetr bit.
Finally, the modified frame is written back to ts@me loca-
tion in the configuration memory from which it wasad.
Optionally, a subsequent read back of the framebeansed
to verify the frame RMW results. The frame addrasd
index of the bit targeted for fault/SEU emulatioe atored
in a list of faults/SEUs to be emulated. For efaelt in the
list, the BIST configuration is downloaded, executgith
the fault on the device, and the results retrievédany of
the output response analyzers (ORAS) record aréiladi-
cating a faulty block under test (BUT), the faultshbeen
detected [9]. However, most tests of a specifiGBRPre-
source require multiple BIST configurations to testpro-
grammability and achieve high fault coverage. Giwe
BIST configurations and faults in the fault list, the total
number of downloads, executions, and retrieval8I8T

four rows of block random access memories (RAMg) an results isNxM. The main reason why this many downloads

digital signal processors (DSPs) tiles in the samkimn
[12]. In Virtex-5 devices, a frame covers 20 ravfCLBs
and 1/O tiles or five rows of block RAMs and DSHeg
[13]. This means that individual FPGA resourcesnca be
reconfigured without also providing explicit configition
data for other FPGA resources that occupy the $eamee.

Virtex-4 and Virtex-5 FPGAs incorporate several con

figuration registers to provide write/read accesshe con-

are required is that there is no way to reset tR&A®once a
fault is detected such that failures are latchetl annew
configuration is downloaded. Partial reconfiguratcan be
used to reduce download time, but it does not réset
ORAs between two consecutive BIST configurations.
Therefore, once a fault is detected, the ORAs netailure
indications for the remaining BIST configuratioiat may
not detect the fault. Even though ORA failure gadions
imply a fault was detected, it is not clear whignfigura-

figuration memory. The Frame Address Register (FAR qn getected the fault for proper evaluation aadfication.

stores the memory address to/from which frame idaait-
ten/read. The Frame Data Register Input (FDRI) Fenagne

Since the BIST approach pseudo-exhaustively teats m

Data Register Output (FDRO) registers facilitate- in tiple identically configured BUTSs, the fault covgeain one



BUT may be assumed to be the overall fault covefagell
BUTSs.

port interface to Boundary Scan, was approximately
This assumption greatly reduces the number 0l50x2,197 = 81,666 seconds, or 91.53 hours. Emgthy

faults, M, that need to be emulated to obtain accurate faulipplication time prompted us to develop the embe dutst

coverage. For example, consider Figure 3, whicwstthe
simulated individual and cumulative single stuckfaitilt

coverage for our BIST configurations for Virtex-2.Bs in

SliceL mode of operation. The simulation resutes laased
on gate-level models of the CLB. The simulatiosutes
show that six BIST configurations are required tonala-
tively detect 100% of single stuck-at faults in t8&B in

SliceL mode of operation. However, as discussefl 4,

the SliceL configurations must be applied twice Isticat
every CLB serves both as a BUT and an ORA.

A total of 3,006 collapsed stuck-at faults wererfddor
the SliceL and another 8,462 faults for SliceM,ddlwhich
were cumulatively detected in fault simulation. €sh com-
prehensive fault lists include all faults affectittte CLB,
including configuration memory bit stuck-at fault¥.here-
fore, by using fault injection to emulate a sulifethe com-
plete fault list (specifically, those faults affe the con-
figuration memory bits), both the quality of thedl con-
figurations and the accuracy of the gate-leveltfairhula-
tion models can be gauged. Less than 100% fauttrage
from fault injection would suggest inaccuraciesha simu-
lation model and potentially lower fault coveraderi the
fault simulations suggest. Of the 3,006 faultshia Slicel,
614 represent configuration memory bit stuck-atltau
These faults were emulated using the RMW approaeh p
viously described, with results shown in Figure ¥Wsing
fault injection, 100% of the configuration memoiiy taults
affecting the SliceL mode of operation were detgcteon-
firming the simulation results in Figure 3. Fummere, the
similarity of the fault coverage trends in Figui@sand 4
helps to verify the accuracy of simulation models.

The biggest drawback of prior fault injection apgebes
is the large numbemM&M) of downloads required to emu-
late a sufficient sample of configuration memory faults.
To obtain the results shown in Figure 4, a totabbdx6 =
3,684 downloads, fault injections, BIST executioasd
results retrievals were required. Additionallyyaevision
to a BIST configuration requires the complete fdigit be
run again to ensure that the modified configuratiors not
jeopardize fault detection capabilities. The tdiale re-
quired for fault injection can be calculated by tiplying
the test time for the set of BIST configurationstbg num-
ber of faults in the fault list. Figure 5 showe ttotal test
time for the set of all CLB BIST configurations ngicom-
pressed downloads via a 50MHz Boundary Scan irterfa
Consider the set of CLB BIST configurations for timéd-
sized LX50T, which requires 3,147 ms using the 50zM
Boundary Scan interface from Figure 5. For the gete
list of 698 configuration memory bit faults (whiéfcludes
SliceM mode configuration bits), the fault injectidime is
698x3.147 = 2,197 seconds. The more realistid fajdc-
tion time that we experienced, using a 333 kHz R&lfel

core processor based fault injection approach wyielatly
improves the test time by both increasing the altike
configuration interface frequency and by increaghmgcon-
figuration interface word size using the ICAP.
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The ICAP provides access to configuration registecs
the configuration memory internally from the FPGabfic.
The ICAP works like the external SelectMAP intedagx-
cept that it has separate 32-bit write and reaédyuss op-



posed to a bidirectional 32-bit bus. The maximyrarating
frequency of the ICAP is 100 MHz, and it supportbit3
16-bit, and 32-bit word sizes [12][13]. Every dewiin-
cludes two ICAPs; however, both ports can not el us-
multaneously. A configuration bit in the configtiom in-
terface control register selects between the uppdrlower

ICAPs. The basic idea of an embedded fault/SEUl&mu

tion approach is to embed all of the logic requif@dframe

RMW operations in the FPGA with the BIST or SEU €on

troller configuration, using the ICAP to access tioafigu-
ration memory. The benefit of embedded fault/SEWla-
tion approach is a minimum 32 times speed up dwerek-
ternal Boundary Scan configuration interface opegaat
the same frequency. In addition, configuratiorgérencies
of 100 MHz are achievable within the FPGA fabric.

3.2. Architecture and Operation

In our embedded fault/SEU emulation approach, a con

figuration containing both the BIST and SEU corigol
architecture and some additional logic is downlahttethe
device. A list of fault/SEU sites (configurationemory

to temporarily store frames during the RMW proceduto
accomplish the RMW, the B port is configured for-tag
reads/writes and the B port input data bus is cctededi-
rectly to the ICAP 32-bit data output bus. The @tplata
output bus is connected to the ICAP inputs via #i82-to-
1 multiplexor. A frame read is initiated at thenfiguration
memory frame address specified by the current faudt as
the frame is read it is stored in the first fortyeo32-bit
words in the block RAM. Next, the A port, configar for
1-bit read/write operations, is used to locatetétiget bit in
the location specified by the fault list entry. the case of a
stuck-at 1/stuck-at O fault, a 1/0 is written a¢ pecified
bit. However, for SEU emulation, the contentstaf speci-
fied bit address are read, inverted, and thenewitiack to
the same address. Finally, the modified frame iigten
back to the same address from which it was reathei&32-
bit B port output data bus.

The fault list is stored in a second dual-port b3-k
block RAM. The block RAM is configured with indeme-
ent 512x36-bit read and write ports. The writet p@rcon-

address and bit indexes) is loaded into the emlzeddenected to a Boundary Scan user access registersaitie

fault/SEU emulation logic in the FPGA either withet
download or via an external interface after dowdlod he

additional logic for controlling the address busmely, a
32-bit shift register and address counter. The pat out-

embedded system proceeds by reading the configarati put bus of the block RAM is connected to the emieedd

frame containing the first fault/SEU site. Thenfigais tem-
porarily stored in the FPGA fabric while the tardst is
located and the fault/SEU injected. Next, the samwrit-
ten back into the configuration memory and the BIST
allowed to execute as normal. When the BIST hastou
completion, a single-bit pass/fail result for trenfiguration
is stored. Normally, using the external interfattes BIST
would proceed to the next configuration. Howevee, em-
bedded logic can correct the previously injectadtfaeset
the ORAs, and then inject the next fault in theltféist, as
can be seen in the flowchart in Figure 6. Thisrapph has
been implemented in Virtex-4 and Virtex-5 FPGAsheT
implementation is discussed in the remainder af $liction.
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Fig. 6. Frame Read-Modify-Write Flowchart
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The embedded fault/SEU emulation core is entirgly i
plemented in CLBs and two block RAMs in the FPGA-fa
ric. A central component of the architecture is tlual port
18-kbit block RAM. Block RAMs have two independignt
configurable read and write ports (A port and Btpawnly
the stored data is shared [12][13]. One block RiaMised

fault/SEU injection logic and state machine. Thisck

RAM structure allows a fault list to be written anthe block
RAM after the device is configured, and the listnsnedi-

ately accessible by the fault/SEU injection logid sstate-
machine. However, the block RAM contents can dlso
initialized with a fault list in the VHDL model, ighinating

the need to shift in the fault list via the Bound&can user
access register. The block RAM is capable of stprip to

512 faults.

The core must be capable of facilitating any lerfgtiit
list up to the maximum of 512 faults. Therefone,emd-of-
file delimiter is required. Each 32-bit word inettblock
RAM has four parity bits which we use to store fite de-
limiters as well as control bits for stuck-at faulind bit-
flips (SEU emulation). The ability to inject mydte faults
simultaneously is also desirable. This requiresiticlusion
of a ‘pause’ delimiter in addition to the ‘end-dlief delim-
iter. Our solution is to use the two least sigmifit bits of
the parity word to encode the fault type (stucl-astuck-at
0, or bit-flip) and to use the two most significaarity bits
to store delimiters. The encoding scheme for theteis
shown in Table Il, and the overall fault list fortrfar the
32-bit data word and 4-bit parity word is shownTable III.

TABLE Il. Parity Bit Encoding, where X = Don't Care

Parity[3:2] Description Parity[1:0] Description
00 Continue to next faul 00 Stuck-at zerp
01 Pause at fault 01 Stuck-at on¢
1X End-of-file (EOF) 1X Bit-flip (SEU)
TABLE lll. Embedded Fault List Format
35:34 33:32 32:21 20:0
Delimiters Fault Code Bit Index Frame Address|




The other significant component of the architectsra
40x256-bit ROM implemented in LUTs in the FPGA fabr
This ROM is used to store all 32-bit ICAP instrocis re-
quired for the frame RMW process. Another eighttonl
bits control the ICAP write and clock enable inpuasid
serve as inputs to the state machine logic. logtms are
stored in the ROM in the order in which they arétten to

injection core block RAMs must be constrained toaaga
of the device away from the BIST configuration. rther-
more, the fault list must not contain the addrddaualt sites
located in the embedded fault/SEU emulation cobédek
RAMs. If any configuration memory frame addressethe
fault list happen to correspond with any of the edded
core’s resources, the core could overwrite a bittrodiing

the block RAM such that the block RAM may be sequenthe functionality of its own resources, resulting likely

tially addressed to initiate new frame reads anitegsr The

failure. An example of a properly constrained desis

two block RAMs, instruction ROM, and ICAP are con- shown in Figure 8. In the figure, a partial arcdytest pat-

nected by an assortment of glue logic, including lgrge
32-bit 2-to-1 multiplexor. A block diagram of treverall
embedded fault/SEU injection core appears in Figure

[VHDL Generii ﬁ EELIJ:SED
Device Name [
- —>
GO—> X
A
P
Fault-[ > REM Frame |¢
BSCAY ek FSM RV
RAM Block
RAM

Fig. 7. Block Diagram of Fault Injection Core

3.3. Implementation Results

The total number of slices used in Virtex-4 andt&r5
FPGAs is shown in Table IV. The primary reason tfoe
difference in the number of logic slices is du¢hte fact that
Virtex-5 incorporates four 6-input LUTs and fouipfflops
per slice while Virtex-4 slices incorporate onlyotw-input
LUTs and two flip-flops. As a result, a Virtex-fice has
twice the logic of a Virtex-4 slice — hence, Virtdxequires
at least twice the number of slices. The smallgiT& in
Virtex-4 account for the additional slices.

TABLE IV. Embedded Fault Injection Core Resources

Attribute Virtex-4 Virtex-5
# lines of VHDL ~950 ~950
# block RAMs 2 2
# slices 228 67

tern generators ORAs and CLBs under test is platede
left half of the device with the embedded faulentjon core
is constrained to the right half of the device.e Hmbedded
fault injection core is loaded with fault addressesiding
only in the left half of the array.

Fig. 8. Embedded Fault Inject Core (Right) withifRaray of CLB BIST
(Left) in Virtex-5 LX20T

The component declaration for the embedded faull/SE
injection core is shown in Figure 9. There are fwimary
inputs and two primary outputs for the model, adl &we a
generic which specifies the device. It should bted that
the Boundary Scan access to the fault list blockVRi&
embedded in the VHDL model, so these I/O do notapp
in the top level component declaration. While tibe level

The entire embedded fault/SEU emulation core is-modcomponent declaration is identical for Virtex-4 avidtex-

eled in VHDL. For VHDL-based designs to be faujtdte
fault/SEU emulation core may be instantiated in tbp
level of the design and synthesized with the intehslystem
function to be faulted. Our BIST configurationse amot
modeled in VHDL, and in this case the fault injeaticore
is added later in the design flow. Because ourTBt8Sn-
figurations are modeled in Xilinx Design Languag®(),

the fault/SEU emulation core is synthesized andvedad
to XDL. The XDL of the embedded core and the BISih
then be combined and the design flow continuedeitimer
case, it will be necessary to constrain the placgroéthe
design to an area of the FPGA not targeted fort fajgc-
tion. For example, if the fault injection coreambedded
with a block RAM BIST configuration [15], the twadilt

5, we maintain separate VHDL models for Virtex-4dan
Virtex-5 because of some minor architectural ddferes

between the device families. First, before writitogthe

configuration memory, a device ID check must be- per
formed by writing the correct device ID to the IDDB@
register. (This prevents accidental configuratidgth a bit-
stream formatted for another device.) The devide &re
kept in a LUT specific to Virtex-4 or Virtex-5 arate syn-
thesized with the design as a constant; all Videand
Virtex-5 devices are supported. The generic deincthe
top level model is used to locate the correct delfiz in the
VHDL LUT. Second, the frame address register rsnfat-
ted differently for Virtex-4 and Virtex-5, requiignsmall
changes in the ordering of the fault list block RAdAta



output bus. Finally, the input/output ordering fbe ICAP
in Virtex-5 is byte-swapped, compared to Virtex@AP.

conponent fltinject is
generi c(DEVICE : string(l to 6):="LX110T");

port ( GO : in std_logic;
CLK : in std_l ogic;

EOF : out std_l ogic;

PAUSED : out std_logic);

end conponent fltinject;
Fig. 9. Fault Inject Core Component Declaration

TABLE V. Fault/SEU Injection Core I/O Descriptions

Name | Direction Description
CLK Input Clock input up to 100MHz (ICAP max)
Digital 1-shot input asserted to start injectioriLafr
GO Input . S
more faults separated by ‘pause’ delimiters.
Pausep| Output Asserted to mdu;ate |nj‘ect|c_m 'of 1 or more faults
separated by ‘pause’ delimiters is complete.
EOF Output | End-of-file asserted when end of fasitis reached.

The details of the primary inputs and outputs ef ¢ém-
bedded core are summarized in Table V. The noamal
bedded fault injection process with a free runngygtem
clock (up to 100 MHz) is as follows:
1.Download BIST configuration with embedded faulteicy
tion core. (Optionally load fault list via BoungaBcan
user access register.)

2.Toggle the GO input. Fault injection begins andsrtio
completion or until a “pause at fault” is encouptkr

3.Monitor the PAUSED and EOF outputs. When PAUSEDI5]

is asserted, execute the BIST configuration andrrtere-
sults. Repeat steps 2 and 3 until both PAUSEDEDH
are asserted, then go to step 4.

4.Execute the BIST for a final time and record resulThe
end of fault file is reached and fault injectiorc@mplete.

The embedded fault injection core has been verified
Virtex-4 and Virtex-5 devices. The core was ifijiaveri-
fied by synthesizing only the core, loading a fdigit, and
executing the fault injection. To verify the infen of
faults and bit-flips, the contents of the configioa mem-
ory were read back via the Boundary Scan interfaoe
compared line-by-line to the original configuratidiown-
load file. The core is capable of injecting statkaults and
SEU bit-flips anywhere in the configuration mememxcept
block RAM contents. It is possible, however, todifp the
architecture to support injection of faults in ltoRAM
contents. Transient faults can be emulated by-batiack
SEU bit-flips such that the fault exists for a minim of 3
ps - the minimum RMW time for a single frame. Bgamn-
porating two back-to-back bit-flips with a ‘pausilimiter,
the user can control a transient fault for longeniqus.

4. SUMMARY AND CONCLUSIONS

We have presented case studies for two embeddesd pro

essor approaches for SEU and fault injection enaulan
FPGA and FPGA cores in reconfigurable SoCs. Irfitisé

case, a dedicated hard core processor was useagetd i

emulated faults in the FPGA core configuration mgmaa
a write-only interface. The lack of read accessh® con-

figuration memory increased the development eftomtl
difficulty for use in the evaluation and analysit RIST
configurations for the FPGA. In the second casmfacore

processor was developed which was capable of read-

modify-write access to the FPGA configuration meynor
This facilitates the emulation of single and muéiptuck-at
faults as well as bit-flipping for emulation of gle and
multiple SEUs. Hence, the embedded SEU/fault efiaula
processor supports a wide variety of fault typeshwio
download penalty for more efficient and thorouglalea-
tion of BIST and SEU mitigation. It should be rebtihat
the fault injection is used in a fault-free deviceanalyze
SEU detection/correction and BIST development andoit
part of the manufacturing or system-level operatiotest.
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