
Embedded Processor Based Fault Injection and
SEU Emulation for FPGAs

Bradley Dutton, Mustafa Ali and Charles Stroud

Dept. of Electrical and Computer Engineering
Auburn University, Alabama

John Sunwoo
Electronics and Telecommunications Research Institute

Daejeon, Republic of Korea

Abstract—Two embedded processor based fault injection
case studies are presented which are applicable to Field
Programmable Gate Arrays (FPGAs) and FPGA cores in
configurable System-on-Chip (SoC) implementations. The
case studies include embedded hard core and soft core
processors which manipulate configuration memory bits to
emulate physical and transient faults in the FPGA core in-
cluding shorts and opens in programmable interconnect and
many different faults in logic resources. The emulated
faults are used to evaluate fault detection capabilities of
Built-In Self-Test (BIST) approaches, including fault identi-
fication capabilities of diagnostic procedures, and to evalu-
ate the effect of Single Event Upsets (SEUs), including their
detection and correction. Embedded processor based ap-
proaches provide significant improvement over previous
fault injection techniques and, in turn, enable a more thor-
ough analysis of BIST, diagnosis, and SEU mitigation.1

1. INTRODUCTION AND BACKGROUND
There are a number of Field Programmable Gate Array

(FPGA) applications that can make use of the presence of
physical faults. These applications include Built-In Self-
Test (BIST) of the FPGA itself [1], some fault-tolerant de-
sign techniques [2], and Single Event Upset (SEU) detec-
tion/correction techniques for FPGA configuration memo-
ries [3]. These applications target FPGA devices as well as
FPGA cores in configurable System-on-Chip (SoC) imple-
mentations. Verification, analysis, and evaluation of these
applications can be performed with the ability to inject or
emulate physical faults in the FPGA.

It is difficult to find actual faulty devices and their use-
fulness is limited due to the fixed nature of the fault [1].
Physical faults can be created by etching the packaged de-
vice and creating opens in routing resources that lie at the
top level of interconnect metal for example, but once again
the usefulness of these devices is limited. A more efficient
approach is to manipulate the configuration memory bits to
emulate physical faults in the device [4]. For example, a
stuck-at fault in a look-up table (LUT) bit can be emulated
by overwriting the particular configuration memory bit and
setting it to the desired stuck-at fault value. SEUs on the
other hand can be emulated by flipping the value of bits in

1 This work was sponsored by the National Security Agency under contract

H98230-04-C-1177 and supported in part by the National Science Foun-
dation Grant CNS-0708962.

the configuration memory. Shorts and opens in the inter-
connect network can be emulated along with almost any
fault in the logic resources that can be controlled by con-
figuration memory bits. When downloading the intended
system configuration, the faults to be emulated can be in-
jected in the configuration data just prior to the actual
download process [1]. Alternatively, the intended configu-
ration can be downloaded with subsequent partial reconfigu-
ration used to inject and emulate the fault.

One of the first FPGA applications to use fault injection
emulation was hardware acceleration techniques for fault
simulation [4]. However, the download time for fault injec-
tion detracted from the hardware acceleration to the extent
that the manipulation of configuration bits was abandoned
and replaced by fault emulation circuitry that was modeled
and downloaded with the circuit to be simulated [5][6]. The
overhead of the additional fault emulation circuitry and its
associated routing was significant but acceptable in the case
of fault simulation [7]. The additional circuitry and routing
was not acceptable in the case of BIST approaches since the
goal was to maximize the resources under test in any given
configuration such that there are no remaining resources
available to emulate faults. As a result, fault injection via
configuration memory bit manipulation has been used ex-
tensively to debug, verify, and analyze development of
BIST configurations and diagnostic procedures for FPGAs
[1][8]. Similarly, analysis of the affects of SEUs [3] as well
as SEU detection and correction in FPGA configuration
memories [9] can use manipulation of configuration mem-
ory bits and has been shown to be effective in emulating
97% of the SEUs induced and observed in radiation cham-
ber experiments [3].

In this paper, we present two case studies of embedded
processors used to manipulate FPGA configuration memory
bits for FPGA BIST and SEU detection/correction applica-
tions. The first case study uses a hard core embedded proc-
essor that has dedicated program and data memories with
write access to the configuration memory of an FPGA core
in a configurable SoC. In this case study, described in Sec-
tion 2, the device is the Atmel AT9K series Field Program-
mable System Level Integrated Circuit (FPSLIC). The sec-
ond case study uses a soft core embedded processor in an
FPGA for manipulation of configuration memory bits via an
internal configuration access port (ICAP). The soft core
processor is downloaded with the application to be injected

STROUCE
Note
from International Conf. on Embedded Systems and Applications, pp. 183-189, 2009

with faults. In this case study, described in Section 3, the
devices include Xilinx Virtex-4 and Virtex-5 FPGAs. Each
case study includes an overview of the device architectures,
description of the fault injection emulation technique, and
experimental results of the actual implementation. The pa-
per is summarized and concludes in Section 4.

2. HARD CORE PROCESSOR CASE STUDY
The Atmel AT94K series configurable SoC consists of

an FPGA core, various RAM cores, and an 8-bit Advanced
Virtual RISC (AVR) microcontroller core as shown in Fig-
ure 1 [10]. Three types of memory resources include [10]:
1) many small 32×4-bit RAMs distributed throughout the
FPGA core, 2) a 4-Kbyte to 16-Kbyte dual-port data RAM
shared by AVR microcontroller and the FPGA core, and 3)
a 20-Kbyte to 32-Kbyte program memory accessible only
by the AVR microcontroller and used for storing machine
code.

The AVR core is an 8-bit RISC architecture with 32
general purpose registers including a number of peripherals
like watchdog timer, UART, etc [10]. There are two 8-bit
bi-directional general purpose I/O ports. An 8-bit bi-
directional data bus between the FPGA and AVR (con-
trolled by the AVR) provides communications between the
two cores. Whenever 8-bit data is written to (or read from)
the data bus by the AVR, a strobe signal to the FPGA core
is generated on FPGAIOWE (or FPGAIORE) along with
one of 16 decoded select lines to the FPGA. There are up to
four external interrupts to the AVR along with 16 interrupts
from the FPGA.

The FPGA core is constructed as a symmetrical N×N ar-
ray of programmable logic blocks (PLBs), where N=48 for
the AT94K40 device (the largest AT94K series SoC) [10].
Each PLB contains two 3-input LUTs, a D flip-flop, and
additional multiplexers/gates. Every PLB has dedicated
diagonal (X) and orthogonal (Y) local routing resources to
its neighboring PLBs, as shown in Figure 2a [10]. As
shown in Figure 2b, the vertical and horizontal global rout-
ing resources associated with each PLB traverse a total of
four PLBs (×4 lines) and eight PLBs (×8 lines). Vertical
and horizontal bus repeaters are placed at the boundaries of
every 4×4 array of PLBs (shown in Figure 2c for the hori-
zontal bus) to prevent signal degradation in lengthy and/or

heavily loaded signal nets. The repeaters also facilitate con-
nections between ×4 and ×8 lines as seen in Figure 2d.

The AVR microcontroller core can write to (but not read

from) the FPGA core configuration memory such that the
FPGA can be dynamically reconfigured (either fully or par-
tially) by the AVR core during normal system operation
[10]. The FPGA configuration memory access is via a 24-
bit address bus and 8-bit data bus. The address bus is parti-
tioned into three 8-bit components referred to as FPGAX,
FPGAY, and FPGAZ. FPGAX and FPGAY correspond to
horizontal and vertical location of the programmable re-
source in the array while FPGAZ corresponds to specific
logic/routing resources within the specified programmable
resource. A write to the 8-bit data bus, FPGAD, results in a
write cycle to a byte of the FPGA configuration memory.

Sets of BIST configurations were developed to test the
various programmable resources in the FPGA core includ-
ing PLBs, RAMs, and the programmable interconnect net-
work with horizontal and vertical repeaters [11]. During the
verification and analysis of the sets of BIST configurations,
every configuration bit associated with the specified re-
source under test was injected in turn with a stuck-at-0 fault
and a stuck-at-1 fault. For each fault injected, the BIST
configurations that target that resource were applied (with
the injected fault present). The BIST results indicate which
BIST configurations, if any, detected the emulated fault.
Because of the large number of faults to be emulated (twice
the number of configuration bits) for each BIST configura-
tion, injecting the faults in the configuration download file
prior to each download takes considerable time as indicated
by the “download run time” in Table I. Note that bank
clock and set/reset lines are associated with the vertical re-
peaters, hence, the larger number of configuration bits when
compared to the horizontal repeaters and associated routing.

 Y

Y

Y Y

X X

X X
PLB

= Programmable
Interconnect Point (PIP)

Fig. 2. AT94K routing architecture

(a) local routing (b) global routing (1 PLB)

(c) horizontal repeaters in global routing
4 PLBs 8 PLBs d) repeater

connections

×4 line

×8 line

PLB

= ×4 line = ×8 line =repeater

=RAM =PLB =repeater

Fig. 1. AT94K series SoC architecture

AVR
Processor

FPGA core

Data
RAM

Program
Memory

Peripheral
Units

8 data

read, write,
18 select lines

16 interrupts

16 address

2 control
8 data

8
data

3
cont

16
address

TABLE I Embedded Fault Injection Run Time Analysis for AT94K40

Resource BIST
Configs

Config
Bits

Total
Faults

Download
Run Time

Processor
Run Time

PLB with
flip-flops

8 81 162 4 hr
29 min

4 min
34 sec

Vertical
Repeaters

20 71 142 3 hr
55 min

4 min
1 sec

Horizontal
Repeaters

20 65 130 3 hr
36 min

3 min
40 sec

Free RAM 3 4 8 13 min 14 sec

BIST configurations can also be generated and executed
by the embedded AVR processor [11]. In this case, fault
injection emulation is somewhat more difficult since the
processor core has write-only access to the FPGA configu-
ration memory. If the processor core could also read the
configuration memory, it could perform a read-modify-write
(RMW) operation to inject a fault at any desired configura-
tion memory bit. With write-only access, one must also
know the normal BIST configuration data for each configu-
ration memory byte in order to inject a single fault without
disturbing the other seven bits of configuration data; other-
wise, we could be injecting eight faults at a time. When the
embedded processor is generating the BIST configuration,
the information is contained within that resident program.
As a result, the fault injection emulation can more realisti-
cally be performed from the embedded processor, although
the development effort is greater without the RMW capabil-
ity. Table I gives the run time when using the embedded
processor core to perform fault injection emulation along
with the BIST configuration generation and execution. A
speed-up of almost a factor of 60 is obtained when the em-
bedded processor core performs the fault injection emula-
tion analysis including BIST configuration generation, BIST
sequence execution, and BIST results retrieval.

3. SOFT CORE PROCESSOR CASE STUDY
The configuration memories of Virtex-4 [12] and Virtex-

5 [13] FPGAs are partitioned into frames, where each frame
has a fixed length of 1,312 bits, or forty-one 32-bit words.
A frame is the smallest addressable segment of the configu-
ration memory; therefore all memory write/read operations
must be performed on whole frames. In Virtex-4 devices, a
frame contains the configuration data for 16 rows of config-
urable logic blocks (CLBs) and input/output (I/O) tiles, or
four rows of block random access memories (RAMs) and
digital signal processors (DSPs) tiles in the same column
[12]. In Virtex-5 devices, a frame covers 20 rows of CLBs
and I/O tiles or five rows of block RAMs and DSPs tiles
[13]. This means that individual FPGA resources cannot be
reconfigured without also providing explicit configuration
data for other FPGA resources that occupy the same frame.

Virtex-4 and Virtex-5 FPGAs incorporate several con-
figuration registers to provide write/read access to the con-
figuration memory. The Frame Address Register (FAR)
stores the memory address to/from which frame data is writ-
ten/read. The Frame Data Register Input (FDRI) and Frame
Data Register Output (FDRO) registers facilitate in-

put/output data to/from the configuration memory. There
are other registers such as the status (STAT) register, the
cyclic redundancy check (CRC) register, and the command
(CMD) register which stores the next register operation to
perform such as “Write FAR” or “Read FDR0”. To
write/read to/from the configuration memory, a combination
of these registers must be used. These registers are accessi-
ble from both Boundary Scan and SelectMAP configuration
interfaces as well as the internal configuration access port
(ICAP) located in, and accessible from, the FPGA fabric.

Emulated SEUs, or faults injected for BIST, require the
reconfiguration of a single configuration memory bit after
system configuration, or each BIST configuration, is down-
loaded. Furthermore, the contents of the frame, which con-
figure multiple rows of resources, must be preserved during
reconfiguration for emulated SEU/fault injection. Our ap-
proach takes advantage of partial reconfiguration and read
back capabilities of Virtex-4 and Virtex-5 FPGAs to imple-
ment RMW for bit-level partial reconfiguration.

3.1. Overview of Approach
The basic approach begins with locating the frame con-

taining the target bit for fault or SEU emulation. The frame
is read in its entirety and stored. Next, the target bit is lo-
cated within the frame, and overwritten with the desired
stuck-at value in the case of a fault. This approach also sup-
ports emulation of SEUs by simply inverting the target bit.
Finally, the modified frame is written back to the same loca-
tion in the configuration memory from which it was read.
Optionally, a subsequent read back of the frame can be used
to verify the frame RMW results. The frame address and
index of the bit targeted for fault/SEU emulation are stored
in a list of faults/SEUs to be emulated. For each fault in the
list, the BIST configuration is downloaded, executed with
the fault on the device, and the results retrieved. If any of
the output response analyzers (ORAs) record a failure, indi-
cating a faulty block under test (BUT), the fault has been
detected [9]. However, most tests of a specific FPGA re-
source require multiple BIST configurations to test its pro-
grammability and achieve high fault coverage. Given N
BIST configurations and M faults in the fault list, the total
number of downloads, executions, and retrievals of BIST
results is N×M. The main reason why this many downloads
are required is that there is no way to reset the ORAs once a
fault is detected such that failures are latched until a new
configuration is downloaded. Partial reconfiguration can be
used to reduce download time, but it does not reset the
ORAs between two consecutive BIST configurations.
Therefore, once a fault is detected, the ORAs return failure
indications for the remaining BIST configurations that may
not detect the fault. Even though ORA failure indications
imply a fault was detected, it is not clear which configura-
tion detected the fault for proper evaluation and verification.

Since the BIST approach pseudo-exhaustively tests mul-
tiple identically configured BUTs, the fault coverage in one

BUT may be assumed to be the overall fault coverage for all
BUTs. This assumption greatly reduces the number of
faults, M, that need to be emulated to obtain accurate fault
coverage. For example, consider Figure 3, which shows the
simulated individual and cumulative single stuck-at fault
coverage for our BIST configurations for Virtex-5 CLBs in
SliceL mode of operation. The simulation results are based
on gate-level models of the CLB. The simulation results
show that six BIST configurations are required to cumula-
tively detect 100% of single stuck-at faults in the CLB in
SliceL mode of operation. However, as discussed in [14],
the SliceL configurations must be applied twice such that
every CLB serves both as a BUT and an ORA.

A total of 3,006 collapsed stuck-at faults were found for
the SliceL and another 8,462 faults for SliceM, all of which
were cumulatively detected in fault simulation. These com-
prehensive fault lists include all faults affecting the CLB,
including configuration memory bit stuck-at faults. There-
fore, by using fault injection to emulate a subset of the com-
plete fault list (specifically, those faults affecting the con-
figuration memory bits), both the quality of the BIST con-
figurations and the accuracy of the gate-level fault simula-
tion models can be gauged. Less than 100% fault coverage
from fault injection would suggest inaccuracies in the simu-
lation model and potentially lower fault coverage than the
fault simulations suggest. Of the 3,006 faults in the SliceL,
614 represent configuration memory bit stuck-at faults.
These faults were emulated using the RMW approach pre-
viously described, with results shown in Figure 4. Using
fault injection, 100% of the configuration memory bit faults
affecting the SliceL mode of operation were detected, con-
firming the simulation results in Figure 3. Furthermore, the
similarity of the fault coverage trends in Figures 3 and 4
helps to verify the accuracy of simulation models.

The biggest drawback of prior fault injection approaches
is the large number (N×M) of downloads required to emu-
late a sufficient sample of configuration memory bit faults.
To obtain the results shown in Figure 4, a total of 614×6 =
3,684 downloads, fault injections, BIST executions, and
results retrievals were required. Additionally, any revision
to a BIST configuration requires the complete fault list be
run again to ensure that the modified configuration does not
jeopardize fault detection capabilities. The total time re-
quired for fault injection can be calculated by multiplying
the test time for the set of BIST configurations by the num-
ber of faults in the fault list. Figure 5 shows the total test
time for the set of all CLB BIST configurations using com-
pressed downloads via a 50MHz Boundary Scan interface.
Consider the set of CLB BIST configurations for the mid-
sized LX50T, which requires 3,147 ms using the 50 MHz
Boundary Scan interface from Figure 5. For the complete
list of 698 configuration memory bit faults (which includes
SliceM mode configuration bits), the fault injection time is
698×3.147 = 2,197 seconds. The more realistic fault injec-
tion time that we experienced, using a 333 kHz PC parallel

port interface to Boundary Scan, was approximately
150×2,197 = 81,666 seconds, or 91.53 hours. This lengthy
application time prompted us to develop the embedded soft
core processor based fault injection approach which greatly
improves the test time by both increasing the achievable
configuration interface frequency and by increasing the con-
figuration interface word size using the ICAP.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6
Configuration #

F

au
lts

 D
et

ec
te

d

0

10

20

30

40

50

60

70

80

90

100

Individual FC

Cumulative FC

Fig. 3. SliceL Simulation Stuck-at Fault Coverage

0

100

200

300

400

500

600

1 2 3 4 5 6
Configuration #

F

au
lts

 D
et

ec
te

d

0

10

20

30

40

50

60

70

80

90

100

Fig. 4. SliceL Fault Injection Stuck-at Fault Coverage

0

1000

2000

3000

4000

5000

6000

7000

8000

LX
20

T

LX
30T

LX
50

T

LX
85

T

LX
110

T

SX35
T

SX50T

SX95
T

T
im

e
 (

m
s)

Readback
Execution
Configuration

Fig. 5. Total CLB Test Time via Boundary Scan

The ICAP provides access to configuration registers and
the configuration memory internally from the FPGA fabric.
The ICAP works like the external SelectMAP interface ex-
cept that it has separate 32-bit write and read buses, as op-

posed to a bidirectional 32-bit bus. The maximum operating
frequency of the ICAP is 100 MHz, and it supports 8-bit,
16-bit, and 32-bit word sizes [12][13]. Every device in-
cludes two ICAPs; however, both ports can not be used si-
multaneously. A configuration bit in the configuration in-
terface control register selects between the upper and lower
ICAPs. The basic idea of an embedded fault/SEU emula-
tion approach is to embed all of the logic required for frame
RMW operations in the FPGA with the BIST or SEU con-
troller configuration, using the ICAP to access the configu-
ration memory. The benefit of embedded fault/SEU emula-
tion approach is a minimum 32 times speed up over the ex-
ternal Boundary Scan configuration interface operating at
the same frequency. In addition, configuration frequencies
of 100 MHz are achievable within the FPGA fabric.

3.2. Architecture and Operation
In our embedded fault/SEU emulation approach, a con-

figuration containing both the BIST and SEU controller
architecture and some additional logic is downloaded to the
device. A list of fault/SEU sites (configuration memory
address and bit indexes) is loaded into the embedded
fault/SEU emulation logic in the FPGA either with the
download or via an external interface after download. The
embedded system proceeds by reading the configuration
frame containing the first fault/SEU site. The frame is tem-
porarily stored in the FPGA fabric while the target bit is
located and the fault/SEU injected. Next, the frame is writ-
ten back into the configuration memory and the BIST is
allowed to execute as normal. When the BIST has run to
completion, a single-bit pass/fail result for the configuration
is stored. Normally, using the external interface, the BIST
would proceed to the next configuration. However, the em-
bedded logic can correct the previously injected fault, reset
the ORAs, and then inject the next fault in the fault list, as
can be seen in the flowchart in Figure 6. This approach has
been implemented in Virtex-4 and Virtex-5 FPGAs. The
implementation is discussed in the remainder of this section.

Fig. 6. Frame Read-Modify-Write Flowchart

The embedded fault/SEU emulation core is entirely im-
plemented in CLBs and two block RAMs in the FPGA fab-
ric. A central component of the architecture is the dual port
18-kbit block RAM. Block RAMs have two independently
configurable read and write ports (A port and B port); only
the stored data is shared [12][13]. One block RAM is used

to temporarily store frames during the RMW procedure. To
accomplish the RMW, the B port is configured for 32-bit
reads/writes and the B port input data bus is connected di-
rectly to the ICAP 32-bit data output bus. The B port data
output bus is connected to the ICAP inputs via a 32-bit 2-to-
1 multiplexor. A frame read is initiated at the configuration
memory frame address specified by the current fault and as
the frame is read it is stored in the first forty-one 32-bit
words in the block RAM. Next, the A port, configured for
1-bit read/write operations, is used to locate the target bit in
the location specified by the fault list entry. In the case of a
stuck-at 1/stuck-at 0 fault, a 1/0 is written at the specified
bit. However, for SEU emulation, the contents of the speci-
fied bit address are read, inverted, and then written back to
the same address. Finally, the modified frame is written
back to the same address from which it was read via the 32-
bit B port output data bus.

The fault list is stored in a second dual-port 18-kbit
block RAM. The block RAM is configured with independ-
ent 512×36-bit read and write ports. The write port is con-
nected to a Boundary Scan user access register with some
additional logic for controlling the address bus; namely, a
32-bit shift register and address counter. The read port out-
put bus of the block RAM is connected to the embedded
fault/SEU injection logic and state machine. This block
RAM structure allows a fault list to be written into the block
RAM after the device is configured, and the list is immedi-
ately accessible by the fault/SEU injection logic and state-
machine. However, the block RAM contents can also be
initialized with a fault list in the VHDL model, eliminating
the need to shift in the fault list via the Boundary Scan user
access register. The block RAM is capable of storing up to
512 faults.

The core must be capable of facilitating any length fault
list up to the maximum of 512 faults. Therefore, an end-of-
file delimiter is required. Each 32-bit word in the block
RAM has four parity bits which we use to store the file de-
limiters as well as control bits for stuck-at faults and bit-
flips (SEU emulation). The ability to inject multiple faults
simultaneously is also desirable. This requires the inclusion
of a ‘pause’ delimiter in addition to the ‘end-of-file’ delim-
iter. Our solution is to use the two least significant bits of
the parity word to encode the fault type (stuck-at 1, stuck-at
0, or bit-flip) and to use the two most significant parity bits
to store delimiters. The encoding scheme for these bits is
shown in Table II, and the overall fault list format for the
32-bit data word and 4-bit parity word is shown in Table III.

TABLE II. Parity Bit Encoding, where X = Don’t Care
Parity[3:2] Description Parity[1:0] Description

00 Continue to next fault 00 Stuck-at zero
01 Pause at fault 01 Stuck-at one
1X End-of-file (EOF) 1X Bit-flip (SEU)

TABLE III. Embedded Fault List Format
35:34 33:32 32:21 20:0

Delimiters Fault Code Bit Index Frame Address

IDLE Read
Frame

Modify
Bit

Write
Frame

EOF
?

Pause?

Reset
Fault
List

Pointer

Yes

No

No

Yes

Start
Fault
List

The other significant component of the architecture is a
40×256-bit ROM implemented in LUTs in the FPGA fabric.
This ROM is used to store all 32-bit ICAP instructions re-
quired for the frame RMW process. Another eight control
bits control the ICAP write and clock enable inputs, and
serve as inputs to the state machine logic. Instructions are
stored in the ROM in the order in which they are written to
the block RAM such that the block RAM may be sequen-
tially addressed to initiate new frame reads and writes. The
two block RAMs, instruction ROM, and ICAP are con-
nected by an assortment of glue logic, including the large
32-bit 2-to-1 multiplexor. A block diagram of the overall
embedded fault/SEU injection core appears in Figure 7.

Fig. 7. Block Diagram of Fault Injection Core

3.3. Implementation Results
The total number of slices used in Virtex-4 and Virtex-5

FPGAs is shown in Table IV. The primary reason for the
difference in the number of logic slices is due to the fact that
Virtex-5 incorporates four 6-input LUTs and four flip-flops
per slice while Virtex-4 slices incorporate only two 4-input
LUTs and two flip-flops. As a result, a Virtex-5 slice has
twice the logic of a Virtex-4 slice – hence, Virtex-4 requires
at least twice the number of slices. The smaller LUTs in
Virtex-4 account for the additional slices.

TABLE IV. Embedded Fault Injection Core Resources
Attribute Virtex-4 Virtex-5

lines of VHDL ~950 ~950
block RAMs 2 2

slices 228 67

The entire embedded fault/SEU emulation core is mod-
eled in VHDL. For VHDL-based designs to be faulted, the
fault/SEU emulation core may be instantiated in the top
level of the design and synthesized with the intended system
function to be faulted. Our BIST configurations are not
modeled in VHDL, and in this case the fault injection core
is added later in the design flow. Because our BIST con-
figurations are modeled in Xilinx Design Language (XDL),
the fault/SEU emulation core is synthesized and converted
to XDL. The XDL of the embedded core and the BIST can
then be combined and the design flow continued. In either
case, it will be necessary to constrain the placement of the
design to an area of the FPGA not targeted for fault injec-
tion. For example, if the fault injection core is embedded
with a block RAM BIST configuration [15], the two fault

injection core block RAMs must be constrained to an area
of the device away from the BIST configuration. Further-
more, the fault list must not contain the address of fault sites
located in the embedded fault/SEU emulation core’s block
RAMs. If any configuration memory frame addresses in the
fault list happen to correspond with any of the embedded
core’s resources, the core could overwrite a bit controlling
the functionality of its own resources, resulting in likely
failure. An example of a properly constrained design is
shown in Figure 8. In the figure, a partial array of test pat-
tern generators ORAs and CLBs under test is placed in the
left half of the device with the embedded fault injection core
is constrained to the right half of the device. The embedded
fault injection core is loaded with fault addresses residing
only in the left half of the array.

Fig. 8. Embedded Fault Inject Core (Right) with Half-Array of CLB BIST

(Left) in Virtex-5 LX20T

The component declaration for the embedded fault/SEU
injection core is shown in Figure 9. There are two primary
inputs and two primary outputs for the model, as well as a
generic which specifies the device. It should be noted that
the Boundary Scan access to the fault list block RAM is
embedded in the VHDL model, so these I/O do not appear
in the top level component declaration. While the top level
component declaration is identical for Virtex-4 and Virtex-
5, we maintain separate VHDL models for Virtex-4 and
Virtex-5 because of some minor architectural differences
between the device families. First, before writing to the
configuration memory, a device ID check must be per-
formed by writing the correct device ID to the IDCODE
register. (This prevents accidental configuration with a bit-
stream formatted for another device.) The device IDs are
kept in a LUT specific to Virtex-4 or Virtex-5 and are syn-
thesized with the design as a constant; all Virtex-4 and
Virtex-5 devices are supported. The generic device in the
top level model is used to locate the correct device ID in the
VHDL LUT. Second, the frame address register is format-
ted differently for Virtex-4 and Virtex-5, requiring small
changes in the ordering of the fault list block RAM data

BSCAN

I
C
A
P

GO

Fault-
List

Block
RAM

EOF
PAUSED

Frame
RMW
Block
RAM

ROM
&

FSM

VHDL Generic:
Device Name

output bus. Finally, the input/output ordering for the ICAP
in Virtex-5 is byte-swapped, compared to Virtex-4 ICAP.

Fig. 9. Fault Inject Core Component Declaration

TABLE V. Fault/SEU Injection Core I/O Descriptions
Name Direction Description
CLK Input Clock input up to 100MHz (ICAP max)

GO Input Digital 1-shot input asserted to start injection of 1 or
more faults separated by ‘pause’ delimiters.

PAUSED Output Asserted to indicate injection of 1 or more faults
separated by ‘pause’ delimiters is complete.

EOF Output End-of-file asserted when end of fault list is reached.

The details of the primary inputs and outputs of the em-
bedded core are summarized in Table V. The normal em-
bedded fault injection process with a free running system
clock (up to 100 MHz) is as follows:
1. Download BIST configuration with embedded fault injec-

tion core. (Optionally load fault list via Boundary Scan
user access register.)

2. Toggle the GO input. Fault injection begins and runs to
completion or until a “pause at fault” is encountered.

3. Monitor the PAUSED and EOF outputs. When PAUSED
is asserted, execute the BIST configuration and record re-
sults. Repeat steps 2 and 3 until both PAUSED and EOF
are asserted, then go to step 4.

4. Execute the BIST for a final time and record results. The
end of fault file is reached and fault injection is complete.

The embedded fault injection core has been verified on
Virtex-4 and Virtex-5 devices. The core was initially veri-
fied by synthesizing only the core, loading a fault list, and
executing the fault injection. To verify the injection of
faults and bit-flips, the contents of the configuration mem-
ory were read back via the Boundary Scan interface and
compared line-by-line to the original configuration down-
load file. The core is capable of injecting stuck-at faults and
SEU bit-flips anywhere in the configuration memory except
block RAM contents. It is possible, however, to modify the
architecture to support injection of faults in block RAM
contents. Transient faults can be emulated by back-to-back
SEU bit-flips such that the fault exists for a minimum of 3
µs - the minimum RMW time for a single frame. By incor-
porating two back-to-back bit-flips with a ‘pause’ delimiter,
the user can control a transient fault for longer periods.

4. SUMMARY AND CONCLUSIONS
We have presented case studies for two embedded proc-

essor approaches for SEU and fault injection emulation in
FPGA and FPGA cores in reconfigurable SoCs. In the first
case, a dedicated hard core processor was used to inject
emulated faults in the FPGA core configuration memory via
a write-only interface. The lack of read access to the con-

figuration memory increased the development effort and
difficulty for use in the evaluation and analysis of BIST
configurations for the FPGA. In the second case, a soft core
processor was developed which was capable of read-
modify-write access to the FPGA configuration memory.
This facilitates the emulation of single and multiple stuck-at
faults as well as bit-flipping for emulation of single and
multiple SEUs. Hence, the embedded SEU/fault emulation
processor supports a wide variety of fault types with no
download penalty for more efficient and thorough evalua-
tion of BIST and SEU mitigation. It should be noted that
the fault injection is used in a fault-free device to analyze
SEU detection/correction and BIST development and is not
part of the manufacturing or system-level operation or test.

REFERENCES
[1] C. Stroud, J. Nall, M. Lashinsky and M. Abramovici, “BIST-

Based Diagnosis of FPGA Interconnect,” Proc. IEEE Int. Test
Conf., pp. 618-627, 2002.

[2] F. Kastensmidt, L. Carro and R. Reis, Fault-Tolerance
Techniques for SRAM-based FPGAs, Springer, 2006.

[3] E. Johnson, M. Caffrey, P. Graham, N. Rollins and M.
Wirthlin, “Accelerator Validation of an FPGA SEU
Simulator,” IEEE Trans. on Nuclear Sci., vol. 50, no. 6, pp.
2147-2157, 2003.

[4] P. Ellervee, J. Raik, K. Tammemäe and R. Ubar,
“Environment for FPGA-based Fault Emulation,” Proc.
Estonian Acad. Sci. Eng., vol. 12, pp. 323–335, 2006.

[5] S. Hwang, J. Hong and C. Wu, “Sequential Circuit Fault
Simulation Using Logic Emulation,” IEEE Trans. on CAD of
ICs and Systems, vol. 17, no. 8, pp. 724-736, 1998.

[6] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Reorda and
M. Violante, “An FPGA-Based Approach for Speeding-Up
Fault Injection Campaigns on Safety-Critical Circuits,” J. of
Electronic Testing: Theory and Applications, vol. 18, pp,
261–271, 2002.

[7] R. Sedaghat, “Routability estimation of FPGA-based fault
injection,” Electronics Letters, vol. 41, no. 14, pp. 790-792,
2005.

[8] T. Slaughter, C. Stroud, J. Emmert and B. Skaggs, “Fault
Injection Emulation for Field Programmable Gate Arrays,”
Proc. Int. Society for Optical Eng., vol. 4525, pp. 1-9, 2001.

[9] B. Dutton and C. Stroud, “Single Event Upset Detection and
Correction in Virtex-4 and Virtex-5 FPGAs,” Proc. ISCA Int.
Conf. on Computers and Their Applications, pp. 57-62, 2009.

[10] AT94K Series Field Programmable System Level Integrated
Circuit, Datasheet, Atmel Corp., 2001.2

[11] J. Sunwoo and C. Stroud, “Built-In Self-Test of Configurable
Cores in SoCs Using Embedded Processor Dynamic
Reconfiguration,” Proc. Int. SoC Design Conf., pp. 174-177,
2005.

[12] Virtex-4 FPGA Configuration Guide, UG071 (v1.5), Xilinx
Inc., 2007.3

[13] Virtex-5 FPGA Configuration User Guide, UG191 (v2.7),
Xilinx Inc., 2008.3

[14] B. Dutton and C. Stroud, “Built-In Self-Test of Configurable
Logic Blocks in Virtex-5 FPGAs,” Proc. IEEE Southeastern
Symp. on System Theory, pp. 235-249, 2009.

[15] B. Garrison, D. Milton, and C. Stroud, “Built-In Self-Test for
Memory Resources in Virtex-4 FPGAs,” Proc. ISCA Int.
Conf. on Computers and Their Applications, pp. 63-68, 2009.

2 Available at www.atmel.com
3 Available at www.xilinx.com

component fltinject is
generic(DEVICE : string(1 to 6):="LX110T");
port(GO : in std_logic;
 CLK : in std_logic;
 EOF : out std_logic;
 PAUSED : out std_logic);
end component fltinject;

